Create a new data sink.
ParametersExpand Collapse
Component that implements the data sink
class CloudPineconeVectorStore: …
Cloud Pinecone Vector Store.
This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.
Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion
api_key: str
The API key for authenticating with Pinecone
class CloudPostgresVectorStore: …
hnsw_settings: Optional[PgVectorHnswSettings]
HNSW settings for PGVector.
distance_method: Optional[Literal["l2", "ip", "cosine", 3 more]]
The distance method to use.
ef_construction: Optional[int]
The number of edges to use during the construction phase.
ef_search: Optional[int]
The number of edges to use during the search phase.
m: Optional[int]
The number of bi-directional links created for each new element.
vector_type: Optional[Literal["vector", "half_vec", "bit", "sparse_vec"]]
The type of vector to use.
class CloudQdrantVectorStore: …
Cloud Qdrant Vector Store.
This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.
Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client
class CloudAzureAISearchVectorStore: …
Cloud Azure AI Search Vector Store.
class CloudMongoDBAtlasVectorSearch: …
Cloud MongoDB Atlas Vector Store.
This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.
Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index
class CloudMilvusVectorStore: …
Cloud Milvus Vector Store.
class CloudAstraDBVectorStore: …
Cloud AstraDB Vector Store.
This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.
Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'
token: str
The Astra DB Application Token to use
api_endpoint: str
The Astra DB JSON API endpoint for your database
collection_name: str
Collection name to use. If not existing, it will be created
embedding_dimension: int
Length of the embedding vectors in use
keyspace: Optional[str]
The keyspace to use. If not provided, 'default_keyspace'
name: str
The name of the data sink.
sink_type: Literal["PINECONE", "POSTGRES", "QDRANT", 4 more]
ReturnsExpand Collapse
class DataSink: …
Schema for a data sink.
id: str
Unique identifier
component: Component
Component that implements the data sink
class CloudPineconeVectorStore: …
Cloud Pinecone Vector Store.
This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.
Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion
api_key: str
The API key for authenticating with Pinecone
class CloudPostgresVectorStore: …
hnsw_settings: Optional[PgVectorHnswSettings]
HNSW settings for PGVector.
distance_method: Optional[Literal["l2", "ip", "cosine", 3 more]]
The distance method to use.
ef_construction: Optional[int]
The number of edges to use during the construction phase.
ef_search: Optional[int]
The number of edges to use during the search phase.
m: Optional[int]
The number of bi-directional links created for each new element.
vector_type: Optional[Literal["vector", "half_vec", "bit", "sparse_vec"]]
The type of vector to use.
class CloudQdrantVectorStore: …
Cloud Qdrant Vector Store.
This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.
Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client
class CloudAzureAISearchVectorStore: …
Cloud Azure AI Search Vector Store.
class CloudMongoDBAtlasVectorSearch: …
Cloud MongoDB Atlas Vector Store.
This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.
Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index
class CloudMilvusVectorStore: …
Cloud Milvus Vector Store.
class CloudAstraDBVectorStore: …
Cloud AstraDB Vector Store.
This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.
Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'
token: str
The Astra DB Application Token to use
api_endpoint: str
The Astra DB JSON API endpoint for your database
collection_name: str
Collection name to use. If not existing, it will be created
embedding_dimension: int
Length of the embedding vectors in use
keyspace: Optional[str]
The keyspace to use. If not provided, 'default_keyspace'
name: str
The name of the data sink.
sink_type: Literal["PINECONE", "POSTGRES", "QDRANT", 4 more]
created_at: Optional[datetime]
Creation datetime
updated_at: Optional[datetime]
Update datetime
Create Data Sink
import os
from llama_cloud import LlamaCloud
client = LlamaCloud(
api_key=os.environ.get("LLAMA_CLOUD_API_KEY"), # This is the default and can be omitted
)
data_sink = client.data_sinks.create(
component={
"foo": "bar"
},
name="name",
sink_type="PINECONE",
)
print(data_sink.id){
"id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
"component": {
"foo": "bar"
},
"name": "name",
"project_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
"sink_type": "PINECONE",
"created_at": "2019-12-27T18:11:19.117Z",
"updated_at": "2019-12-27T18:11:19.117Z"
}Returns Examples
{
"id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
"component": {
"foo": "bar"
},
"name": "name",
"project_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
"sink_type": "PINECONE",
"created_at": "2019-12-27T18:11:19.117Z",
"updated_at": "2019-12-27T18:11:19.117Z"
}