Skip to content
Get started

Extraction

Extract Stateless
extraction.run(ExtractionRunParams**kwargs) -> ExtractJob
POST/api/v1/extraction/run

ExtractionJobs

List Jobs
extraction.jobs.list(JobListParams**kwargs) -> JobListResponse
GET/api/v1/extraction/jobs
Run Job
extraction.jobs.create(JobCreateParams**kwargs) -> ExtractJob
POST/api/v1/extraction/jobs
Get Job
extraction.jobs.get(strjob_id) -> ExtractJob
GET/api/v1/extraction/jobs/{job_id}
Run Job On File
extraction.jobs.file(JobFileParams**kwargs) -> ExtractJob
POST/api/v1/extraction/jobs/file
Get Job Result
extraction.jobs.get_result(strjob_id, JobGetResultParams**kwargs) -> JobGetResultResponse
GET/api/v1/extraction/jobs/{job_id}/result
ModelsExpand Collapse
class ExtractJob:

Schema for an extraction job.

id: str

The id of the extraction job

formatuuid
extraction_agent: ExtractAgent

The agent that the job was run on.

id: str

The id of the extraction agent.

formatuuid

The configuration parameters for the extraction agent.

chunk_mode: Optional[Literal["PAGE", "SECTION"]]

The mode to use for chunking the document.

Accepts one of the following:
"PAGE"
"SECTION"
Deprecatedcitation_bbox: Optional[bool]

Whether to fetch citation bounding boxes for the extraction. Only available in PREMIUM mode. Deprecated: this is now synonymous with cite_sources.

cite_sources: Optional[bool]

Whether to cite sources for the extraction.

confidence_scores: Optional[bool]

Whether to fetch confidence scores for the extraction.

extract_model: Optional[Union[Literal["openai-gpt-4-1", "openai-gpt-4-1-mini", "openai-gpt-4-1-nano", 8 more], str, null]]

The extract model to use for data extraction. If not provided, uses the default for the extraction mode.

Accepts one of the following:
Literal["openai-gpt-4-1", "openai-gpt-4-1-mini", "openai-gpt-4-1-nano", 8 more]

Extract model options.

Accepts one of the following:
"openai-gpt-4-1"
"openai-gpt-4-1-mini"
"openai-gpt-4-1-nano"
"openai-gpt-5"
"openai-gpt-5-mini"
"gemini-2.0-flash"
"gemini-2.5-flash"
"gemini-2.5-flash-lite"
"gemini-2.5-pro"
"openai-gpt-4o"
"openai-gpt-4o-mini"
str
extraction_mode: Optional[Literal["FAST", "BALANCED", "PREMIUM", "MULTIMODAL"]]

The extraction mode specified (FAST, BALANCED, MULTIMODAL, PREMIUM).

Accepts one of the following:
"FAST"
"BALANCED"
"PREMIUM"
"MULTIMODAL"
extraction_target: Optional[Literal["PER_DOC", "PER_PAGE", "PER_TABLE_ROW"]]

The extraction target specified.

Accepts one of the following:
"PER_DOC"
"PER_PAGE"
"PER_TABLE_ROW"
high_resolution_mode: Optional[bool]

Whether to use high resolution mode for the extraction.

invalidate_cache: Optional[bool]

Whether to invalidate the cache for the extraction.

multimodal_fast_mode: Optional[bool]

DEPRECATED: Whether to use fast mode for multimodal extraction.

num_pages_context: Optional[int]

Number of pages to pass as context on long document extraction.

minimum1
page_range: Optional[str]

Comma-separated list of page numbers or ranges to extract from (1-based, e.g., '1,3,5-7,9' or '1-3,8-10').

parse_model: Optional[Literal["openai-gpt-4o", "openai-gpt-4o-mini", "openai-gpt-4-1", 23 more]]

Public model names.

Accepts one of the following:
"openai-gpt-4o"
"openai-gpt-4o-mini"
"openai-gpt-4-1"
"openai-gpt-4-1-mini"
"openai-gpt-4-1-nano"
"openai-gpt-5"
"openai-gpt-5-mini"
"openai-gpt-5-nano"
"openai-text-embedding-3-large"
"openai-text-embedding-3-small"
"openai-whisper-1"
"anthropic-sonnet-3.5"
"anthropic-sonnet-3.5-v2"
"anthropic-sonnet-3.7"
"anthropic-sonnet-4.0"
"anthropic-sonnet-4.5"
"anthropic-haiku-3.5"
"anthropic-haiku-4.5"
"gemini-2.5-flash"
"gemini-3.0-pro"
"gemini-2.5-pro"
"gemini-2.0-flash"
"gemini-2.0-flash-lite"
"gemini-2.5-flash-lite"
"gemini-1.5-flash"
"gemini-1.5-pro"
priority: Optional[Literal["low", "medium", "high", "critical"]]

The priority for the request. This field may be ignored or overwritten depending on the organization tier.

Accepts one of the following:
"low"
"medium"
"high"
"critical"
system_prompt: Optional[str]

The system prompt to use for the extraction.

use_reasoning: Optional[bool]

Whether to use reasoning for the extraction.

data_schema: Dict[str, Union[Dict[str, object], List[object], str, 3 more]]

The schema of the data.

Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
name: str

The name of the extraction agent.

project_id: str

The ID of the project that the extraction agent belongs to.

formatuuid
created_at: Optional[datetime]

The creation time of the extraction agent.

formatdate-time
custom_configuration: Optional[Literal["default"]]

Custom configuration type for the extraction agent. Currently supports 'default'.

updated_at: Optional[datetime]

The last update time of the extraction agent.

formatdate-time
status: Literal["PENDING", "SUCCESS", "ERROR", 2 more]

The status of the extraction job

Accepts one of the following:
"PENDING"
"SUCCESS"
"ERROR"
"PARTIAL_SUCCESS"
"CANCELLED"
error: Optional[str]

The error that occurred during extraction

Deprecatedfile: Optional[File]

Schema for a file.

id: str

Unique identifier

formatuuid
name: str
project_id: str

The ID of the project that the file belongs to

formatuuid
created_at: Optional[datetime]

Creation datetime

formatdate-time
data_source_id: Optional[str]

The ID of the data source that the file belongs to

formatuuid
expires_at: Optional[datetime]

The expiration date for the file. Files past this date can be deleted.

formatdate-time
external_file_id: Optional[str]

The ID of the file in the external system

file_size: Optional[int]

Size of the file in bytes

minimum0
file_type: Optional[str]

File type (e.g. pdf, docx, etc.)

maxLength3000
minLength1
last_modified_at: Optional[datetime]

The last modified time of the file

formatdate-time
permission_info: Optional[Dict[str, Union[Dict[str, object], List[object], str, 3 more]]]

Permission information for the file

Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
purpose: Optional[str]

The intended purpose of the file (e.g., 'user_data', 'parse', 'extract', 'split', 'classify')

resource_info: Optional[Dict[str, Union[Dict[str, object], List[object], str, 3 more]]]

Resource information for the file

Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
updated_at: Optional[datetime]

Update datetime

formatdate-time
file_id: Optional[str]

The id of the file that the extract was extracted from

formatuuid
class WebhookConfiguration:

Allows the user to configure webhook options for notifications and callbacks.

webhook_events: Optional[List[Literal["extract.pending", "extract.success", "extract.error", 13 more]]]

List of event names to subscribe to

Accepts one of the following:
"extract.pending"
"extract.success"
"extract.error"
"extract.partial_success"
"extract.cancelled"
"parse.pending"
"parse.success"
"parse.error"
"parse.partial_success"
"parse.cancelled"
"classify.pending"
"classify.success"
"classify.error"
"classify.partial_success"
"classify.cancelled"
"unmapped_event"
webhook_headers: Optional[Dict[str, str]]

Custom HTTP headers to include with webhook requests.

webhook_output_format: Optional[str]

The output format to use for the webhook. Defaults to string if none supplied. Currently supported values: string, json

webhook_url: Optional[str]

The URL to send webhook notifications to.

ExtractionRuns

List Extract Runs
extraction.runs.list(RunListParams**kwargs) -> SyncPaginatedExtractRuns[ExtractRun]
GET/api/v1/extraction/runs
Get Run
extraction.runs.get(strrun_id, RunGetParams**kwargs) -> ExtractRun
GET/api/v1/extraction/runs/{run_id}
Delete Extraction Run
extraction.runs.delete(strrun_id, RunDeleteParams**kwargs) -> object
DELETE/api/v1/extraction/runs/{run_id}
Get Run By Job Id
extraction.runs.get_by_job(strjob_id, RunGetByJobParams**kwargs) -> ExtractRun
GET/api/v1/extraction/runs/by-job/{job_id}
ModelsExpand Collapse
class ExtractConfig:

Configuration parameters for the extraction agent.

chunk_mode: Optional[Literal["PAGE", "SECTION"]]

The mode to use for chunking the document.

Accepts one of the following:
"PAGE"
"SECTION"
Deprecatedcitation_bbox: Optional[bool]

Whether to fetch citation bounding boxes for the extraction. Only available in PREMIUM mode. Deprecated: this is now synonymous with cite_sources.

cite_sources: Optional[bool]

Whether to cite sources for the extraction.

confidence_scores: Optional[bool]

Whether to fetch confidence scores for the extraction.

extract_model: Optional[Union[Literal["openai-gpt-4-1", "openai-gpt-4-1-mini", "openai-gpt-4-1-nano", 8 more], str, null]]

The extract model to use for data extraction. If not provided, uses the default for the extraction mode.

Accepts one of the following:
Literal["openai-gpt-4-1", "openai-gpt-4-1-mini", "openai-gpt-4-1-nano", 8 more]

Extract model options.

Accepts one of the following:
"openai-gpt-4-1"
"openai-gpt-4-1-mini"
"openai-gpt-4-1-nano"
"openai-gpt-5"
"openai-gpt-5-mini"
"gemini-2.0-flash"
"gemini-2.5-flash"
"gemini-2.5-flash-lite"
"gemini-2.5-pro"
"openai-gpt-4o"
"openai-gpt-4o-mini"
str
extraction_mode: Optional[Literal["FAST", "BALANCED", "PREMIUM", "MULTIMODAL"]]

The extraction mode specified (FAST, BALANCED, MULTIMODAL, PREMIUM).

Accepts one of the following:
"FAST"
"BALANCED"
"PREMIUM"
"MULTIMODAL"
extraction_target: Optional[Literal["PER_DOC", "PER_PAGE", "PER_TABLE_ROW"]]

The extraction target specified.

Accepts one of the following:
"PER_DOC"
"PER_PAGE"
"PER_TABLE_ROW"
high_resolution_mode: Optional[bool]

Whether to use high resolution mode for the extraction.

invalidate_cache: Optional[bool]

Whether to invalidate the cache for the extraction.

multimodal_fast_mode: Optional[bool]

DEPRECATED: Whether to use fast mode for multimodal extraction.

num_pages_context: Optional[int]

Number of pages to pass as context on long document extraction.

minimum1
page_range: Optional[str]

Comma-separated list of page numbers or ranges to extract from (1-based, e.g., '1,3,5-7,9' or '1-3,8-10').

parse_model: Optional[Literal["openai-gpt-4o", "openai-gpt-4o-mini", "openai-gpt-4-1", 23 more]]

Public model names.

Accepts one of the following:
"openai-gpt-4o"
"openai-gpt-4o-mini"
"openai-gpt-4-1"
"openai-gpt-4-1-mini"
"openai-gpt-4-1-nano"
"openai-gpt-5"
"openai-gpt-5-mini"
"openai-gpt-5-nano"
"openai-text-embedding-3-large"
"openai-text-embedding-3-small"
"openai-whisper-1"
"anthropic-sonnet-3.5"
"anthropic-sonnet-3.5-v2"
"anthropic-sonnet-3.7"
"anthropic-sonnet-4.0"
"anthropic-sonnet-4.5"
"anthropic-haiku-3.5"
"anthropic-haiku-4.5"
"gemini-2.5-flash"
"gemini-3.0-pro"
"gemini-2.5-pro"
"gemini-2.0-flash"
"gemini-2.0-flash-lite"
"gemini-2.5-flash-lite"
"gemini-1.5-flash"
"gemini-1.5-pro"
priority: Optional[Literal["low", "medium", "high", "critical"]]

The priority for the request. This field may be ignored or overwritten depending on the organization tier.

Accepts one of the following:
"low"
"medium"
"high"
"critical"
system_prompt: Optional[str]

The system prompt to use for the extraction.

use_reasoning: Optional[bool]

Whether to use reasoning for the extraction.

class ExtractRun:

Schema for an extraction run.

id: str

The id of the extraction run

formatuuid

The config used for extraction

chunk_mode: Optional[Literal["PAGE", "SECTION"]]

The mode to use for chunking the document.

Accepts one of the following:
"PAGE"
"SECTION"
Deprecatedcitation_bbox: Optional[bool]

Whether to fetch citation bounding boxes for the extraction. Only available in PREMIUM mode. Deprecated: this is now synonymous with cite_sources.

cite_sources: Optional[bool]

Whether to cite sources for the extraction.

confidence_scores: Optional[bool]

Whether to fetch confidence scores for the extraction.

extract_model: Optional[Union[Literal["openai-gpt-4-1", "openai-gpt-4-1-mini", "openai-gpt-4-1-nano", 8 more], str, null]]

The extract model to use for data extraction. If not provided, uses the default for the extraction mode.

Accepts one of the following:
Literal["openai-gpt-4-1", "openai-gpt-4-1-mini", "openai-gpt-4-1-nano", 8 more]

Extract model options.

Accepts one of the following:
"openai-gpt-4-1"
"openai-gpt-4-1-mini"
"openai-gpt-4-1-nano"
"openai-gpt-5"
"openai-gpt-5-mini"
"gemini-2.0-flash"
"gemini-2.5-flash"
"gemini-2.5-flash-lite"
"gemini-2.5-pro"
"openai-gpt-4o"
"openai-gpt-4o-mini"
str
extraction_mode: Optional[Literal["FAST", "BALANCED", "PREMIUM", "MULTIMODAL"]]

The extraction mode specified (FAST, BALANCED, MULTIMODAL, PREMIUM).

Accepts one of the following:
"FAST"
"BALANCED"
"PREMIUM"
"MULTIMODAL"
extraction_target: Optional[Literal["PER_DOC", "PER_PAGE", "PER_TABLE_ROW"]]

The extraction target specified.

Accepts one of the following:
"PER_DOC"
"PER_PAGE"
"PER_TABLE_ROW"
high_resolution_mode: Optional[bool]

Whether to use high resolution mode for the extraction.

invalidate_cache: Optional[bool]

Whether to invalidate the cache for the extraction.

multimodal_fast_mode: Optional[bool]

DEPRECATED: Whether to use fast mode for multimodal extraction.

num_pages_context: Optional[int]

Number of pages to pass as context on long document extraction.

minimum1
page_range: Optional[str]

Comma-separated list of page numbers or ranges to extract from (1-based, e.g., '1,3,5-7,9' or '1-3,8-10').

parse_model: Optional[Literal["openai-gpt-4o", "openai-gpt-4o-mini", "openai-gpt-4-1", 23 more]]

Public model names.

Accepts one of the following:
"openai-gpt-4o"
"openai-gpt-4o-mini"
"openai-gpt-4-1"
"openai-gpt-4-1-mini"
"openai-gpt-4-1-nano"
"openai-gpt-5"
"openai-gpt-5-mini"
"openai-gpt-5-nano"
"openai-text-embedding-3-large"
"openai-text-embedding-3-small"
"openai-whisper-1"
"anthropic-sonnet-3.5"
"anthropic-sonnet-3.5-v2"
"anthropic-sonnet-3.7"
"anthropic-sonnet-4.0"
"anthropic-sonnet-4.5"
"anthropic-haiku-3.5"
"anthropic-haiku-4.5"
"gemini-2.5-flash"
"gemini-3.0-pro"
"gemini-2.5-pro"
"gemini-2.0-flash"
"gemini-2.0-flash-lite"
"gemini-2.5-flash-lite"
"gemini-1.5-flash"
"gemini-1.5-pro"
priority: Optional[Literal["low", "medium", "high", "critical"]]

The priority for the request. This field may be ignored or overwritten depending on the organization tier.

Accepts one of the following:
"low"
"medium"
"high"
"critical"
system_prompt: Optional[str]

The system prompt to use for the extraction.

use_reasoning: Optional[bool]

Whether to use reasoning for the extraction.

data_schema: Dict[str, Union[Dict[str, object], List[object], str, 3 more]]

The schema used for extraction

Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
extraction_agent_id: str

The id of the extraction agent

formatuuid
from_ui: bool

Whether this extraction run was triggered from the UI

project_id: str

The id of the project that the extraction run belongs to

formatuuid
status: Literal["CREATED", "PENDING", "SUCCESS", "ERROR"]

The status of the extraction run

Accepts one of the following:
"CREATED"
"PENDING"
"SUCCESS"
"ERROR"
created_at: Optional[datetime]

Creation datetime

formatdate-time
data: Optional[Union[Dict[str, Union[Dict[str, object], List[object], str, 3 more]], List[Dict[str, Union[Dict[str, object], List[object], str, 3 more]]], null]]

The data extracted from the file

Accepts one of the following:
Dict[str, Union[Dict[str, object], List[object], str, 3 more]]
Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
List[Dict[str, Union[Dict[str, object], List[object], str, 3 more]]]
Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
error: Optional[str]

The error that occurred during extraction

extraction_metadata: Optional[Dict[str, Union[Dict[str, object], List[object], str, 3 more]]]

The metadata extracted from the file

Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
Deprecatedfile: Optional[File]

Schema for a file.

id: str

Unique identifier

formatuuid
name: str
project_id: str

The ID of the project that the file belongs to

formatuuid
created_at: Optional[datetime]

Creation datetime

formatdate-time
data_source_id: Optional[str]

The ID of the data source that the file belongs to

formatuuid
expires_at: Optional[datetime]

The expiration date for the file. Files past this date can be deleted.

formatdate-time
external_file_id: Optional[str]

The ID of the file in the external system

file_size: Optional[int]

Size of the file in bytes

minimum0
file_type: Optional[str]

File type (e.g. pdf, docx, etc.)

maxLength3000
minLength1
last_modified_at: Optional[datetime]

The last modified time of the file

formatdate-time
permission_info: Optional[Dict[str, Union[Dict[str, object], List[object], str, 3 more]]]

Permission information for the file

Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
purpose: Optional[str]

The intended purpose of the file (e.g., 'user_data', 'parse', 'extract', 'split', 'classify')

resource_info: Optional[Dict[str, Union[Dict[str, object], List[object], str, 3 more]]]

Resource information for the file

Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
updated_at: Optional[datetime]

Update datetime

formatdate-time
file_id: Optional[str]

The id of the file that the extract was extracted from

formatuuid
job_id: Optional[str]

The id of the job that the extraction run belongs to

formatuuid
updated_at: Optional[datetime]

Update datetime

formatdate-time

ExtractionExtraction Agents

Create Extraction Agent
extraction.extraction_agents.create(ExtractionAgentCreateParams**kwargs) -> ExtractAgent
POST/api/v1/extraction/extraction-agents
List Extraction Agents
extraction.extraction_agents.list(ExtractionAgentListParams**kwargs) -> ExtractionAgentListResponse
GET/api/v1/extraction/extraction-agents
Get Extraction Agent
extraction.extraction_agents.get(strextraction_agent_id) -> ExtractAgent
GET/api/v1/extraction/extraction-agents/{extraction_agent_id}
Delete Extraction Agent
extraction.extraction_agents.delete(strextraction_agent_id) -> object
DELETE/api/v1/extraction/extraction-agents/{extraction_agent_id}
Update Extraction Agent
extraction.extraction_agents.update(strextraction_agent_id, ExtractionAgentUpdateParams**kwargs) -> ExtractAgent
PUT/api/v1/extraction/extraction-agents/{extraction_agent_id}
ModelsExpand Collapse
class ExtractAgent:

Schema and configuration for an extraction agent.

id: str

The id of the extraction agent.

formatuuid

The configuration parameters for the extraction agent.

chunk_mode: Optional[Literal["PAGE", "SECTION"]]

The mode to use for chunking the document.

Accepts one of the following:
"PAGE"
"SECTION"
Deprecatedcitation_bbox: Optional[bool]

Whether to fetch citation bounding boxes for the extraction. Only available in PREMIUM mode. Deprecated: this is now synonymous with cite_sources.

cite_sources: Optional[bool]

Whether to cite sources for the extraction.

confidence_scores: Optional[bool]

Whether to fetch confidence scores for the extraction.

extract_model: Optional[Union[Literal["openai-gpt-4-1", "openai-gpt-4-1-mini", "openai-gpt-4-1-nano", 8 more], str, null]]

The extract model to use for data extraction. If not provided, uses the default for the extraction mode.

Accepts one of the following:
Literal["openai-gpt-4-1", "openai-gpt-4-1-mini", "openai-gpt-4-1-nano", 8 more]

Extract model options.

Accepts one of the following:
"openai-gpt-4-1"
"openai-gpt-4-1-mini"
"openai-gpt-4-1-nano"
"openai-gpt-5"
"openai-gpt-5-mini"
"gemini-2.0-flash"
"gemini-2.5-flash"
"gemini-2.5-flash-lite"
"gemini-2.5-pro"
"openai-gpt-4o"
"openai-gpt-4o-mini"
str
extraction_mode: Optional[Literal["FAST", "BALANCED", "PREMIUM", "MULTIMODAL"]]

The extraction mode specified (FAST, BALANCED, MULTIMODAL, PREMIUM).

Accepts one of the following:
"FAST"
"BALANCED"
"PREMIUM"
"MULTIMODAL"
extraction_target: Optional[Literal["PER_DOC", "PER_PAGE", "PER_TABLE_ROW"]]

The extraction target specified.

Accepts one of the following:
"PER_DOC"
"PER_PAGE"
"PER_TABLE_ROW"
high_resolution_mode: Optional[bool]

Whether to use high resolution mode for the extraction.

invalidate_cache: Optional[bool]

Whether to invalidate the cache for the extraction.

multimodal_fast_mode: Optional[bool]

DEPRECATED: Whether to use fast mode for multimodal extraction.

num_pages_context: Optional[int]

Number of pages to pass as context on long document extraction.

minimum1
page_range: Optional[str]

Comma-separated list of page numbers or ranges to extract from (1-based, e.g., '1,3,5-7,9' or '1-3,8-10').

parse_model: Optional[Literal["openai-gpt-4o", "openai-gpt-4o-mini", "openai-gpt-4-1", 23 more]]

Public model names.

Accepts one of the following:
"openai-gpt-4o"
"openai-gpt-4o-mini"
"openai-gpt-4-1"
"openai-gpt-4-1-mini"
"openai-gpt-4-1-nano"
"openai-gpt-5"
"openai-gpt-5-mini"
"openai-gpt-5-nano"
"openai-text-embedding-3-large"
"openai-text-embedding-3-small"
"openai-whisper-1"
"anthropic-sonnet-3.5"
"anthropic-sonnet-3.5-v2"
"anthropic-sonnet-3.7"
"anthropic-sonnet-4.0"
"anthropic-sonnet-4.5"
"anthropic-haiku-3.5"
"anthropic-haiku-4.5"
"gemini-2.5-flash"
"gemini-3.0-pro"
"gemini-2.5-pro"
"gemini-2.0-flash"
"gemini-2.0-flash-lite"
"gemini-2.5-flash-lite"
"gemini-1.5-flash"
"gemini-1.5-pro"
priority: Optional[Literal["low", "medium", "high", "critical"]]

The priority for the request. This field may be ignored or overwritten depending on the organization tier.

Accepts one of the following:
"low"
"medium"
"high"
"critical"
system_prompt: Optional[str]

The system prompt to use for the extraction.

use_reasoning: Optional[bool]

Whether to use reasoning for the extraction.

data_schema: Dict[str, Union[Dict[str, object], List[object], str, 3 more]]

The schema of the data.

Accepts one of the following:
Dict[str, object]
List[object]
str
float
bool
name: str

The name of the extraction agent.

project_id: str

The ID of the project that the extraction agent belongs to.

formatuuid
created_at: Optional[datetime]

The creation time of the extraction agent.

formatdate-time
custom_configuration: Optional[Literal["default"]]

Custom configuration type for the extraction agent. Currently supports 'default'.

updated_at: Optional[datetime]

The last update time of the extraction agent.

formatdate-time

ExtractionExtraction AgentsSchema

Validate Extraction Schema
extraction.extraction_agents.schema.validate_schema(SchemaValidateSchemaParams**kwargs) -> SchemaValidateSchemaResponse
POST/api/v1/extraction/extraction-agents/schema/validation
Generate Extraction Schema
extraction.extraction_agents.schema.generate_schema(SchemaGenerateSchemaParams**kwargs) -> SchemaGenerateSchemaResponse
POST/api/v1/extraction/extraction-agents/schema/generate