Skip to content
Get started

List Data Sinks

data_sinks.list(DataSinkListParams**kwargs) -> DataSinkListResponse
GET/api/v1/data-sinks

List data sinks for a given project.

ParametersExpand Collapse
organization_id: Optional[str]
project_id: Optional[str]
ReturnsExpand Collapse
List[DataSink]
id: str

Unique identifier

formatuuid
component: Component

Component that implements the data sink

Accepts one of the following:
Dict[str, object]
class CloudPineconeVectorStore:

Cloud Pinecone Vector Store.

This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.

Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion

api_key: str

The API key for authenticating with Pinecone

formatpassword
index_name: str
class_name: Optional[str]
insert_kwargs: Optional[Dict[str, object]]
namespace: Optional[str]
supports_nested_metadata_filters: Optional[Literal[true]]
class CloudPostgresVectorStore:
database: str
embed_dim: int
host: str
password: str
port: int
schema_name: str
table_name: str
user: str
class_name: Optional[str]
hnsw_settings: Optional[PgVectorHnswSettings]

HNSW settings for PGVector.

distance_method: Optional[Literal["l2", "ip", "cosine", 3 more]]

The distance method to use.

Accepts one of the following:
"l2"
"ip"
"cosine"
"l1"
"hamming"
"jaccard"
ef_construction: Optional[int]

The number of edges to use during the construction phase.

minimum1

The number of edges to use during the search phase.

minimum1
m: Optional[int]

The number of bi-directional links created for each new element.

minimum1
vector_type: Optional[Literal["vector", "half_vec", "bit", "sparse_vec"]]

The type of vector to use.

Accepts one of the following:
"vector"
"half_vec"
"bit"
"sparse_vec"
perform_setup: Optional[bool]
supports_nested_metadata_filters: Optional[bool]
class CloudQdrantVectorStore:

Cloud Qdrant Vector Store.

This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.

Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client

api_key: str
collection_name: str
url: str
class_name: Optional[str]
client_kwargs: Optional[Dict[str, object]]
max_retries: Optional[int]
supports_nested_metadata_filters: Optional[Literal[true]]
class CloudAzureAISearchVectorStore:

Cloud Azure AI Search Vector Store.

search_service_api_key: str
search_service_endpoint: str
class_name: Optional[str]
client_id: Optional[str]
client_secret: Optional[str]
embedding_dimension: Optional[int]
filterable_metadata_field_keys: Optional[Dict[str, object]]
index_name: Optional[str]
search_service_api_version: Optional[str]
supports_nested_metadata_filters: Optional[Literal[true]]
tenant_id: Optional[str]

Cloud MongoDB Atlas Vector Store.

This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.

Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index

class CloudMilvusVectorStore:

Cloud Milvus Vector Store.

uri: str
token: Optional[str]
class_name: Optional[str]
collection_name: Optional[str]
embedding_dimension: Optional[int]
supports_nested_metadata_filters: Optional[bool]
class CloudAstraDBVectorStore:

Cloud AstraDB Vector Store.

This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.

Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'

token: str

The Astra DB Application Token to use

formatpassword
api_endpoint: str

The Astra DB JSON API endpoint for your database

collection_name: str

Collection name to use. If not existing, it will be created

embedding_dimension: int

Length of the embedding vectors in use

class_name: Optional[str]
keyspace: Optional[str]

The keyspace to use. If not provided, 'default_keyspace'

supports_nested_metadata_filters: Optional[Literal[true]]
name: str

The name of the data sink.

project_id: str
sink_type: Literal["PINECONE", "POSTGRES", "QDRANT", 4 more]
Accepts one of the following:
"PINECONE"
"POSTGRES"
"QDRANT"
"AZUREAI_SEARCH"
"MONGODB_ATLAS"
"MILVUS"
"ASTRA_DB"
created_at: Optional[datetime]

Creation datetime

formatdate-time
updated_at: Optional[datetime]

Update datetime

formatdate-time

List Data Sinks

import os
from llama_cloud import LlamaCloud

client = LlamaCloud(
    api_key=os.environ.get("LLAMA_CLOUD_API_KEY"),  # This is the default and can be omitted
)
data_sinks = client.data_sinks.list()
print(data_sinks)
[
  {
    "id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
    "component": {
      "foo": "bar"
    },
    "name": "name",
    "project_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
    "sink_type": "PINECONE",
    "created_at": "2019-12-27T18:11:19.117Z",
    "updated_at": "2019-12-27T18:11:19.117Z"
  }
]
Returns Examples
[
  {
    "id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
    "component": {
      "foo": "bar"
    },
    "name": "name",
    "project_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
    "sink_type": "PINECONE",
    "created_at": "2019-12-27T18:11:19.117Z",
    "updated_at": "2019-12-27T18:11:19.117Z"
  }
]