List Pipeline Document Chunks
pipelines.documents.get_chunks(strdocument_id, DocumentGetChunksParams**kwargs) -> DocumentGetChunksResponse
GET/api/v1/pipelines/{pipeline_id}/documents/{document_id}/chunks
Return a list of chunks for a pipeline document.
Parameters
pipeline_id: str
document_id: str
Returns
List Pipeline Document Chunks
import os
from llama_cloud import LlamaCloud
client = LlamaCloud(
api_key=os.environ.get("LLAMA_CLOUD_API_KEY"), # This is the default and can be omitted
)
text_nodes = client.pipelines.documents.get_chunks(
document_id="document_id",
pipeline_id="182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
)
print(text_nodes)[
{
"class_name": "class_name",
"embedding": [
0
],
"end_char_idx": 0,
"excluded_embed_metadata_keys": [
"string"
],
"excluded_llm_metadata_keys": [
"string"
],
"extra_info": {
"foo": "bar"
},
"id_": "id_",
"metadata_seperator": "metadata_seperator",
"metadata_template": "metadata_template",
"mimetype": "mimetype",
"relationships": {
"foo": {
"node_id": "node_id",
"class_name": "class_name",
"hash": "hash",
"metadata": {
"foo": "bar"
},
"node_type": "1"
}
},
"start_char_idx": 0,
"text": "text",
"text_template": "text_template"
}
]Returns Examples
[
{
"class_name": "class_name",
"embedding": [
0
],
"end_char_idx": 0,
"excluded_embed_metadata_keys": [
"string"
],
"excluded_llm_metadata_keys": [
"string"
],
"extra_info": {
"foo": "bar"
},
"id_": "id_",
"metadata_seperator": "metadata_seperator",
"metadata_template": "metadata_template",
"mimetype": "mimetype",
"relationships": {
"foo": {
"node_id": "node_id",
"class_name": "class_name",
"hash": "hash",
"metadata": {
"foo": "bar"
},
"node_type": "1"
}
},
"start_char_idx": 0,
"text": "text",
"text_template": "text_template"
}
]