Skip to content
Get started

List Pipeline Document Chunks

pipelines.documents.get_chunks(strdocument_id, DocumentGetChunksParams**kwargs) -> DocumentGetChunksResponse
GET/api/v1/pipelines/{pipeline_id}/documents/{document_id}/chunks

Return a list of chunks for a pipeline document.

ParametersExpand Collapse
pipeline_id: str
document_id: str
ReturnsExpand Collapse
List[TextNode]
class_name: Optional[str]
embedding: Optional[List[float]]

Embedding of the node.

end_char_idx: Optional[int]

End char index of the node.

excluded_embed_metadata_keys: Optional[List[str]]

Metadata keys that are excluded from text for the embed model.

excluded_llm_metadata_keys: Optional[List[str]]

Metadata keys that are excluded from text for the LLM.

extra_info: Optional[Dict[str, object]]

A flat dictionary of metadata fields

id: Optional[str]

Unique ID of the node.

metadata_seperator: Optional[str]

Separator between metadata fields when converting to string.

metadata_template: Optional[str]

Template for how metadata is formatted, with {key} and {value} placeholders.

mimetype: Optional[str]

MIME type of the node content.

relationships: Optional[Dict[str, Relationships]]

A mapping of relationships to other node information.

Accepts one of the following:
class RelationshipsRelatedNodeInfo:
node_id: str
class_name: Optional[str]
hash: Optional[str]
metadata: Optional[Dict[str, object]]
node_type: Optional[Union[Literal["1", "2", "3", 2 more], str, null]]
Accepts one of the following:
Literal["1", "2", "3", 2 more]
Accepts one of the following:
"1"
"2"
"3"
"4"
"5"
str
List[RelationshipsUnionMember1]
node_id: str
class_name: Optional[str]
hash: Optional[str]
metadata: Optional[Dict[str, object]]
node_type: Optional[Union[Literal["1", "2", "3", 2 more], str, null]]
Accepts one of the following:
Literal["1", "2", "3", 2 more]
Accepts one of the following:
"1"
"2"
"3"
"4"
"5"
str
start_char_idx: Optional[int]

Start char index of the node.

text: Optional[str]

Text content of the node.

text_template: Optional[str]

Template for how text is formatted, with {content} and {metadata_str} placeholders.

List Pipeline Document Chunks

import os
from llama_cloud import LlamaCloud

client = LlamaCloud(
    api_key=os.environ.get("LLAMA_CLOUD_API_KEY"),  # This is the default and can be omitted
)
text_nodes = client.pipelines.documents.get_chunks(
    document_id="document_id",
    pipeline_id="182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
)
print(text_nodes)
[
  {
    "class_name": "class_name",
    "embedding": [
      0
    ],
    "end_char_idx": 0,
    "excluded_embed_metadata_keys": [
      "string"
    ],
    "excluded_llm_metadata_keys": [
      "string"
    ],
    "extra_info": {
      "foo": "bar"
    },
    "id_": "id_",
    "metadata_seperator": "metadata_seperator",
    "metadata_template": "metadata_template",
    "mimetype": "mimetype",
    "relationships": {
      "foo": {
        "node_id": "node_id",
        "class_name": "class_name",
        "hash": "hash",
        "metadata": {
          "foo": "bar"
        },
        "node_type": "1"
      }
    },
    "start_char_idx": 0,
    "text": "text",
    "text_template": "text_template"
  }
]
Returns Examples
[
  {
    "class_name": "class_name",
    "embedding": [
      0
    ],
    "end_char_idx": 0,
    "excluded_embed_metadata_keys": [
      "string"
    ],
    "excluded_llm_metadata_keys": [
      "string"
    ],
    "extra_info": {
      "foo": "bar"
    },
    "id_": "id_",
    "metadata_seperator": "metadata_seperator",
    "metadata_template": "metadata_template",
    "mimetype": "mimetype",
    "relationships": {
      "foo": {
        "node_id": "node_id",
        "class_name": "class_name",
        "hash": "hash",
        "metadata": {
          "foo": "bar"
        },
        "node_type": "1"
      }
    },
    "start_char_idx": 0,
    "text": "text",
    "text_template": "text_template"
  }
]