Update Data Sink
Update a data sink by ID.
ParametersExpand Collapse
body: DataSinkUpdateParams { sink_type, component, name }
sink_type: "PINECONE" | "POSTGRES" | "QDRANT" | 4 more
component?: Record<string, unknown> | CloudPineconeVectorStore { api_key, index_name, class_name, 3 more } | CloudPostgresVectorStore { database, embed_dim, host, 10 more } | 5 more | null
Component that implements the data sink
CloudPineconeVectorStore { api_key, index_name, class_name, 3 more }
Cloud Pinecone Vector Store.
This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.
Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion
api_key: string
The API key for authenticating with Pinecone
CloudPostgresVectorStore { database, embed_dim, host, 10 more }
HNSW settings for PGVector.
distance_method?: "l2" | "ip" | "cosine" | 3 more
The distance method to use.
ef_construction?: number
The number of edges to use during the construction phase.
ef_search?: number
The number of edges to use during the search phase.
m?: number
The number of bi-directional links created for each new element.
vector_type?: "vector" | "half_vec" | "bit" | "sparse_vec"
The type of vector to use.
CloudQdrantVectorStore { api_key, collection_name, url, 4 more }
Cloud Qdrant Vector Store.
This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.
Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client
CloudAzureAISearchVectorStore { search_service_api_key, search_service_endpoint, class_name, 8 more }
Cloud Azure AI Search Vector Store.
CloudMongoDBAtlasVectorSearch { collection_name, db_name, mongodb_uri, 5 more }
Cloud MongoDB Atlas Vector Store.
This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.
Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index
CloudMilvusVectorStore { uri, token, class_name, 3 more }
Cloud Milvus Vector Store.
CloudAstraDBVectorStore { token, api_endpoint, collection_name, 4 more }
Cloud AstraDB Vector Store.
This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.
Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'
token: string
The Astra DB Application Token to use
api_endpoint: string
The Astra DB JSON API endpoint for your database
collection_name: string
Collection name to use. If not existing, it will be created
embedding_dimension: number
Length of the embedding vectors in use
keyspace?: string | null
The keyspace to use. If not provided, 'default_keyspace'
name?: string | null
The name of the data sink.
ReturnsExpand Collapse
DataSink { id, component, name, 4 more }
Schema for a data sink.
id: string
Unique identifier
component: Record<string, unknown> | CloudPineconeVectorStore { api_key, index_name, class_name, 3 more } | CloudPostgresVectorStore { database, embed_dim, host, 10 more } | 5 more
Component that implements the data sink
CloudPineconeVectorStore { api_key, index_name, class_name, 3 more }
Cloud Pinecone Vector Store.
This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.
Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion
api_key: string
The API key for authenticating with Pinecone
CloudPostgresVectorStore { database, embed_dim, host, 10 more }
HNSW settings for PGVector.
distance_method?: "l2" | "ip" | "cosine" | 3 more
The distance method to use.
ef_construction?: number
The number of edges to use during the construction phase.
ef_search?: number
The number of edges to use during the search phase.
m?: number
The number of bi-directional links created for each new element.
vector_type?: "vector" | "half_vec" | "bit" | "sparse_vec"
The type of vector to use.
CloudQdrantVectorStore { api_key, collection_name, url, 4 more }
Cloud Qdrant Vector Store.
This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.
Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client
CloudAzureAISearchVectorStore { search_service_api_key, search_service_endpoint, class_name, 8 more }
Cloud Azure AI Search Vector Store.
CloudMongoDBAtlasVectorSearch { collection_name, db_name, mongodb_uri, 5 more }
Cloud MongoDB Atlas Vector Store.
This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.
Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index
CloudMilvusVectorStore { uri, token, class_name, 3 more }
Cloud Milvus Vector Store.
CloudAstraDBVectorStore { token, api_endpoint, collection_name, 4 more }
Cloud AstraDB Vector Store.
This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.
Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'
token: string
The Astra DB Application Token to use
api_endpoint: string
The Astra DB JSON API endpoint for your database
collection_name: string
Collection name to use. If not existing, it will be created
embedding_dimension: number
Length of the embedding vectors in use
keyspace?: string | null
The keyspace to use. If not provided, 'default_keyspace'
name: string
The name of the data sink.
sink_type: "PINECONE" | "POSTGRES" | "QDRANT" | 4 more
created_at?: string | null
Creation datetime
updated_at?: string | null
Update datetime
Update Data Sink
import LlamaCloud from '@llamaindex/llama-cloud';
const client = new LlamaCloud({
apiKey: process.env['LLAMA_CLOUD_API_KEY'], // This is the default and can be omitted
});
const dataSink = await client.dataSinks.update('182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e', {
sink_type: 'PINECONE',
});
console.log(dataSink.id);{
"id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
"component": {
"foo": "bar"
},
"name": "name",
"project_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
"sink_type": "PINECONE",
"created_at": "2019-12-27T18:11:19.117Z",
"updated_at": "2019-12-27T18:11:19.117Z"
}Returns Examples
{
"id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
"component": {
"foo": "bar"
},
"name": "name",
"project_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
"sink_type": "PINECONE",
"created_at": "2019-12-27T18:11:19.117Z",
"updated_at": "2019-12-27T18:11:19.117Z"
}