Skip to content
Get started

Get Retriever

client.retrievers.get(stringretrieverID, RetrieverGetParams { organization_id, project_id } query?, RequestOptionsoptions?): Retriever { id, name, project_id, 3 more }
GET/api/v1/retrievers/{retriever_id}

Get a Retriever by ID.

ParametersExpand Collapse
retrieverID: string
query: RetrieverGetParams { organization_id, project_id }
organization_id?: string | null
project_id?: string | null
ReturnsExpand Collapse
Retriever { id, name, project_id, 3 more }

An entity that retrieves context nodes from several sub RetrieverTools.

id: string

Unique identifier

formatuuid
name: string

A name for the retriever tool. Will default to the pipeline name if not provided.

maxLength3000
minLength1
project_id: string

The ID of the project this retriever resides in.

formatuuid
created_at?: string | null

Creation datetime

formatdate-time
pipelines?: Array<RetrieverPipeline { description, name, pipeline_id, preset_retrieval_parameters } >

The pipelines this retriever uses.

description: string | null

A description of the retriever tool.

maxLength15000
name: string | null

A name for the retriever tool. Will default to the pipeline name if not provided.

maxLength3000
minLength1
pipeline_id: string

The ID of the pipeline this tool uses.

formatuuid
preset_retrieval_parameters?: PresetRetrievalParams { alpha, class_name, dense_similarity_cutoff, 11 more }

Parameters for retrieval configuration.

alpha?: number | null

Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.

maximum1
minimum0
class_name?: string
dense_similarity_cutoff?: number | null

Minimum similarity score wrt query for retrieval

maximum1
minimum0
dense_similarity_top_k?: number | null

Number of nodes for dense retrieval.

maximum100
minimum1
enable_reranking?: boolean | null

Enable reranking for retrieval

files_top_k?: number | null

Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).

maximum5
minimum1
rerank_top_n?: number | null

Number of reranked nodes for returning.

maximum100
minimum1
retrieval_mode?: RetrievalMode

The retrieval mode for the query.

Accepts one of the following:
"chunks"
"files_via_metadata"
"files_via_content"
"auto_routed"
Deprecatedretrieve_image_nodes?: boolean

Whether to retrieve image nodes.

retrieve_page_figure_nodes?: boolean

Whether to retrieve page figure nodes.

retrieve_page_screenshot_nodes?: boolean

Whether to retrieve page screenshot nodes.

search_filters?: MetadataFilters { filters, condition } | null

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
search_filters_inference_schema?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

JSON Schema that will be used to infer search_filters. Omit or leave as null to skip inference.

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
sparse_similarity_top_k?: number | null

Number of nodes for sparse retrieval.

maximum100
minimum1
updated_at?: string | null

Update datetime

formatdate-time

Get Retriever

import LlamaCloud from '@llamaindex/llama-cloud';

const client = new LlamaCloud({
  apiKey: process.env['LLAMA_CLOUD_API_KEY'], // This is the default and can be omitted
});

const retriever = await client.retrievers.get('182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e');

console.log(retriever.id);
{
  "id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
  "name": "x",
  "project_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
  "created_at": "2019-12-27T18:11:19.117Z",
  "pipelines": [
    {
      "description": "description",
      "name": "x",
      "pipeline_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
      "preset_retrieval_parameters": {
        "alpha": 0,
        "class_name": "class_name",
        "dense_similarity_cutoff": 0,
        "dense_similarity_top_k": 1,
        "enable_reranking": true,
        "files_top_k": 1,
        "rerank_top_n": 1,
        "retrieval_mode": "chunks",
        "retrieve_image_nodes": true,
        "retrieve_page_figure_nodes": true,
        "retrieve_page_screenshot_nodes": true,
        "search_filters": {
          "filters": [
            {
              "key": "key",
              "value": 0,
              "operator": "=="
            }
          ],
          "condition": "and"
        },
        "search_filters_inference_schema": {
          "foo": {
            "foo": "bar"
          }
        },
        "sparse_similarity_top_k": 1
      }
    }
  ],
  "updated_at": "2019-12-27T18:11:19.117Z"
}
Returns Examples
{
  "id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
  "name": "x",
  "project_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
  "created_at": "2019-12-27T18:11:19.117Z",
  "pipelines": [
    {
      "description": "description",
      "name": "x",
      "pipeline_id": "182bd5e5-6e1a-4fe4-a799-aa6d9a6ab26e",
      "preset_retrieval_parameters": {
        "alpha": 0,
        "class_name": "class_name",
        "dense_similarity_cutoff": 0,
        "dense_similarity_top_k": 1,
        "enable_reranking": true,
        "files_top_k": 1,
        "rerank_top_n": 1,
        "retrieval_mode": "chunks",
        "retrieve_image_nodes": true,
        "retrieve_page_figure_nodes": true,
        "retrieve_page_screenshot_nodes": true,
        "search_filters": {
          "filters": [
            {
              "key": "key",
              "value": 0,
              "operator": "=="
            }
          ],
          "condition": "and"
        },
        "search_filters_inference_schema": {
          "foo": {
            "foo": "bar"
          }
        },
        "sparse_similarity_top_k": 1
      }
    }
  ],
  "updated_at": "2019-12-27T18:11:19.117Z"
}