Skip to content
Get started

Pipelines

Search Pipelines
client.pipelines.list(PipelineListParams { organization_id, pipeline_name, pipeline_type, 2 more } query?, RequestOptionsoptions?): PipelineListResponse { id, embedding_config, name, 15 more }
GET/api/v1/pipelines
Create Pipeline
client.pipelines.create(PipelineCreateParams { name, organization_id, project_id, 12 more } params, RequestOptionsoptions?): Pipeline { id, embedding_config, name, 15 more }
POST/api/v1/pipelines
Get Pipeline
client.pipelines.get(stringpipelineID, RequestOptionsoptions?): Pipeline { id, embedding_config, name, 15 more }
GET/api/v1/pipelines/{pipeline_id}
Update Existing Pipeline
client.pipelines.update(stringpipelineID, PipelineUpdateParams { data_sink, data_sink_id, embedding_config, 9 more } body, RequestOptionsoptions?): Pipeline { id, embedding_config, name, 15 more }
PUT/api/v1/pipelines/{pipeline_id}
Delete Pipeline
client.pipelines.delete(stringpipelineID, RequestOptionsoptions?): void
DELETE/api/v1/pipelines/{pipeline_id}
Get Pipeline Status
client.pipelines.getStatus(stringpipelineID, PipelineGetStatusParams { full_details } query?, RequestOptionsoptions?): ManagedIngestionStatusResponse { status, deployment_date, effective_at, 2 more }
GET/api/v1/pipelines/{pipeline_id}/status
Upsert Pipeline
client.pipelines.upsert(PipelineUpsertParams { name, organization_id, project_id, 12 more } params, RequestOptionsoptions?): Pipeline { id, embedding_config, name, 15 more }
PUT/api/v1/pipelines
Run Search
client.pipelines.retrieve(stringpipelineID, PipelineRetrieveParams { query, organization_id, project_id, 14 more } params, RequestOptionsoptions?): PipelineRetrieveResponse { pipeline_id, retrieval_nodes, class_name, 5 more }
POST/api/v1/pipelines/{pipeline_id}/retrieve
ModelsExpand Collapse
AdvancedModeTransformConfig { chunking_config, mode, segmentation_config }
chunking_config?: NoneChunkingConfig { mode } | CharacterChunkingConfig { chunk_overlap, chunk_size, mode } | TokenChunkingConfig { chunk_overlap, chunk_size, mode, separator } | 2 more

Configuration for the chunking.

Accepts one of the following:
NoneChunkingConfig { mode }
mode?: "none"
CharacterChunkingConfig { chunk_overlap, chunk_size, mode }
chunk_overlap?: number
chunk_size?: number
mode?: "character"
TokenChunkingConfig { chunk_overlap, chunk_size, mode, separator }
chunk_overlap?: number
chunk_size?: number
mode?: "token"
separator?: string
SentenceChunkingConfig { chunk_overlap, chunk_size, mode, 2 more }
chunk_overlap?: number
chunk_size?: number
mode?: "sentence"
paragraph_separator?: string
separator?: string
SemanticChunkingConfig { breakpoint_percentile_threshold, buffer_size, mode }
breakpoint_percentile_threshold?: number
buffer_size?: number
mode?: "semantic"
mode?: "advanced"
segmentation_config?: NoneSegmentationConfig { mode } | PageSegmentationConfig { mode, page_separator } | ElementSegmentationConfig { mode }

Configuration for the segmentation.

Accepts one of the following:
NoneSegmentationConfig { mode }
mode?: "none"
PageSegmentationConfig { mode, page_separator }
mode?: "page"
page_separator?: string
ElementSegmentationConfig { mode }
mode?: "element"
AutoTransformConfig { chunk_overlap, chunk_size, mode }
chunk_overlap?: number

Chunk overlap for the transformation.

chunk_size?: number

Chunk size for the transformation.

exclusiveMinimum0
mode?: "auto"
AzureOpenAIEmbedding { additional_kwargs, api_base, api_key, 12 more }
additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string

The base URL for Azure deployment.

api_key?: string | null

The OpenAI API key.

api_version?: string

The version for Azure OpenAI API.

azure_deployment?: string | null

The Azure deployment to use.

azure_endpoint?: string | null

The Azure endpoint to use.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
AzureOpenAIEmbeddingConfig { component, type }
component?: AzureOpenAIEmbedding { additional_kwargs, api_base, api_key, 12 more }

Configuration for the Azure OpenAI embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string

The base URL for Azure deployment.

api_key?: string | null

The OpenAI API key.

api_version?: string

The version for Azure OpenAI API.

azure_deployment?: string | null

The Azure deployment to use.

azure_endpoint?: string | null

The Azure endpoint to use.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
type?: "AZURE_EMBEDDING"

Type of the embedding model.

BedrockEmbedding { additional_kwargs, aws_access_key_id, aws_secret_access_key, 9 more }
additional_kwargs?: Record<string, unknown>

Additional kwargs for the bedrock client.

aws_access_key_id?: string | null

AWS Access Key ID to use

aws_secret_access_key?: string | null

AWS Secret Access Key to use

aws_session_token?: string | null

AWS Session Token to use

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

The maximum number of API retries.

exclusiveMinimum0
model_name?: string

The modelId of the Bedrock model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

profile_name?: string | null

The name of aws profile to use. If not given, then the default profile is used.

region_name?: string | null

AWS region name to use. Uses region configured in AWS CLI if not passed

timeout?: number

The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.

BedrockEmbeddingConfig { component, type }
component?: BedrockEmbedding { additional_kwargs, aws_access_key_id, aws_secret_access_key, 9 more }

Configuration for the Bedrock embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the bedrock client.

aws_access_key_id?: string | null

AWS Access Key ID to use

aws_secret_access_key?: string | null

AWS Secret Access Key to use

aws_session_token?: string | null

AWS Session Token to use

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

The maximum number of API retries.

exclusiveMinimum0
model_name?: string

The modelId of the Bedrock model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

profile_name?: string | null

The name of aws profile to use. If not given, then the default profile is used.

region_name?: string | null

AWS region name to use. Uses region configured in AWS CLI if not passed

timeout?: number

The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.

type?: "BEDROCK_EMBEDDING"

Type of the embedding model.

CohereEmbedding { api_key, class_name, embed_batch_size, 5 more }
api_key: string | null

The Cohere API key.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embedding_type?: string

Embedding type. If not provided float embedding_type is used when needed.

input_type?: string | null

Model Input type. If not provided, search_document and search_query are used when needed.

model_name?: string

The modelId of the Cohere model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

truncate?: string

Truncation type - START/ END/ NONE

CohereEmbeddingConfig { component, type }
component?: CohereEmbedding { api_key, class_name, embed_batch_size, 5 more }

Configuration for the Cohere embedding model.

api_key: string | null

The Cohere API key.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embedding_type?: string

Embedding type. If not provided float embedding_type is used when needed.

input_type?: string | null

Model Input type. If not provided, search_document and search_query are used when needed.

model_name?: string

The modelId of the Cohere model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

truncate?: string

Truncation type - START/ END/ NONE

type?: "COHERE_EMBEDDING"

Type of the embedding model.

DataSinkCreate { component, name, sink_type }

Schema for creating a data sink.

component: Record<string, unknown> | CloudPineconeVectorStore { api_key, index_name, class_name, 3 more } | CloudPostgresVectorStore { database, embed_dim, host, 10 more } | 5 more

Component that implements the data sink

Accepts one of the following:
Record<string, unknown>
CloudPineconeVectorStore { api_key, index_name, class_name, 3 more }

Cloud Pinecone Vector Store.

This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.

Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion

api_key: string

The API key for authenticating with Pinecone

formatpassword
index_name: string
class_name?: string
insert_kwargs?: Record<string, unknown> | null
namespace?: string | null
supports_nested_metadata_filters?: true
CloudPostgresVectorStore { database, embed_dim, host, 10 more }
database: string
embed_dim: number
host: string
password: string
port: number
schema_name: string
table_name: string
user: string
class_name?: string
hnsw_settings?: PgVectorHnswSettings { distance_method, ef_construction, ef_search, 2 more } | null

HNSW settings for PGVector.

distance_method?: "l2" | "ip" | "cosine" | 3 more

The distance method to use.

Accepts one of the following:
"l2"
"ip"
"cosine"
"l1"
"hamming"
"jaccard"
ef_construction?: number

The number of edges to use during the construction phase.

minimum1

The number of edges to use during the search phase.

minimum1
m?: number

The number of bi-directional links created for each new element.

minimum1
vector_type?: "vector" | "half_vec" | "bit" | "sparse_vec"

The type of vector to use.

Accepts one of the following:
"vector"
"half_vec"
"bit"
"sparse_vec"
perform_setup?: boolean
supports_nested_metadata_filters?: boolean
CloudQdrantVectorStore { api_key, collection_name, url, 4 more }

Cloud Qdrant Vector Store.

This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.

Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client

api_key: string
collection_name: string
url: string
class_name?: string
client_kwargs?: Record<string, unknown>
max_retries?: number
supports_nested_metadata_filters?: true
CloudAzureAISearchVectorStore { search_service_api_key, search_service_endpoint, class_name, 8 more }

Cloud Azure AI Search Vector Store.

search_service_api_key: string
search_service_endpoint: string
class_name?: string
client_id?: string | null
client_secret?: string | null
embedding_dimension?: number | null
filterable_metadata_field_keys?: Record<string, unknown> | null
index_name?: string | null
search_service_api_version?: string | null
supports_nested_metadata_filters?: true
tenant_id?: string | null

Cloud MongoDB Atlas Vector Store.

This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.

Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index

CloudMilvusVectorStore { uri, token, class_name, 3 more }

Cloud Milvus Vector Store.

uri: string
token?: string | null
class_name?: string
collection_name?: string | null
embedding_dimension?: number | null
supports_nested_metadata_filters?: boolean
CloudAstraDBVectorStore { token, api_endpoint, collection_name, 4 more }

Cloud AstraDB Vector Store.

This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.

Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'

token: string

The Astra DB Application Token to use

formatpassword
api_endpoint: string

The Astra DB JSON API endpoint for your database

collection_name: string

Collection name to use. If not existing, it will be created

embedding_dimension: number

Length of the embedding vectors in use

class_name?: string
keyspace?: string | null

The keyspace to use. If not provided, 'default_keyspace'

supports_nested_metadata_filters?: true
name: string

The name of the data sink.

sink_type: "PINECONE" | "POSTGRES" | "QDRANT" | 4 more
Accepts one of the following:
"PINECONE"
"POSTGRES"
"QDRANT"
"AZUREAI_SEARCH"
"MONGODB_ATLAS"
"MILVUS"
"ASTRA_DB"
GeminiEmbedding { api_base, api_key, class_name, 6 more }
api_base?: string | null

API base to access the model. Defaults to None.

api_key?: string | null

API key to access the model. Defaults to None.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
model_name?: string

The modelId of the Gemini model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

task_type?: string | null

The task for embedding model.

title?: string | null

Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.

transport?: string | null

Transport to access the model. Defaults to None.

GeminiEmbeddingConfig { component, type }
component?: GeminiEmbedding { api_base, api_key, class_name, 6 more }

Configuration for the Gemini embedding model.

api_base?: string | null

API base to access the model. Defaults to None.

api_key?: string | null

API key to access the model. Defaults to None.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
model_name?: string

The modelId of the Gemini model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

task_type?: string | null

The task for embedding model.

title?: string | null

Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.

transport?: string | null

Transport to access the model. Defaults to None.

type?: "GEMINI_EMBEDDING"

Type of the embedding model.

HuggingFaceInferenceAPIEmbedding { token, class_name, cookies, 9 more }
token?: string | boolean | null

Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server.

Accepts one of the following:
string
boolean
class_name?: string
cookies?: Record<string, string> | null

Additional cookies to send to the server.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
headers?: Record<string, string> | null

Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values.

model_name?: string | null

Hugging Face model name. If None, the task will be used.

num_workers?: number | null

The number of workers to use for async embedding calls.

pooling?: "cls" | "mean" | "last" | null

Enum of possible pooling choices with pooling behaviors.

Accepts one of the following:
"cls"
"mean"
"last"
query_instruction?: string | null

Instruction to prepend during query embedding.

task?: string | null

Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None.

text_instruction?: string | null

Instruction to prepend during text embedding.

timeout?: number | null

The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.

HuggingFaceInferenceAPIEmbeddingConfig { component, type }
component?: HuggingFaceInferenceAPIEmbedding { token, class_name, cookies, 9 more }

Configuration for the HuggingFace Inference API embedding model.

token?: string | boolean | null

Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server.

Accepts one of the following:
string
boolean
class_name?: string
cookies?: Record<string, string> | null

Additional cookies to send to the server.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
headers?: Record<string, string> | null

Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values.

model_name?: string | null

Hugging Face model name. If None, the task will be used.

num_workers?: number | null

The number of workers to use for async embedding calls.

pooling?: "cls" | "mean" | "last" | null

Enum of possible pooling choices with pooling behaviors.

Accepts one of the following:
"cls"
"mean"
"last"
query_instruction?: string | null

Instruction to prepend during query embedding.

task?: string | null

Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None.

text_instruction?: string | null

Instruction to prepend during text embedding.

timeout?: number | null

The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.

type?: "HUGGINGFACE_API_EMBEDDING"

Type of the embedding model.

LlamaParseParameters { adaptive_long_table, aggressive_table_extraction, annotate_links, 115 more }

Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline.

adaptive_long_table?: boolean | null
aggressive_table_extraction?: boolean | null
auto_mode?: boolean | null
auto_mode_configuration_json?: string | null
auto_mode_trigger_on_image_in_page?: boolean | null
auto_mode_trigger_on_regexp_in_page?: string | null
auto_mode_trigger_on_table_in_page?: boolean | null
auto_mode_trigger_on_text_in_page?: string | null
azure_openai_api_version?: string | null
azure_openai_deployment_name?: string | null
azure_openai_endpoint?: string | null
azure_openai_key?: string | null
bbox_bottom?: number | null
bbox_left?: number | null
bbox_right?: number | null
bbox_top?: number | null
bounding_box?: string | null
compact_markdown_table?: boolean | null
complemental_formatting_instruction?: string | null
content_guideline_instruction?: string | null
continuous_mode?: boolean | null
disable_image_extraction?: boolean | null
disable_ocr?: boolean | null
disable_reconstruction?: boolean | null
do_not_cache?: boolean | null
do_not_unroll_columns?: boolean | null
enable_cost_optimizer?: boolean | null
extract_charts?: boolean | null
extract_layout?: boolean | null
extract_printed_page_number?: boolean | null
fast_mode?: boolean | null
formatting_instruction?: string | null
gpt4o_api_key?: string | null
gpt4o_mode?: boolean | null
guess_xlsx_sheet_name?: boolean | null
hide_footers?: boolean | null
hide_headers?: boolean | null
high_res_ocr?: boolean | null
html_make_all_elements_visible?: boolean | null
html_remove_fixed_elements?: boolean | null
html_remove_navigation_elements?: boolean | null
http_proxy?: string | null
ignore_document_elements_for_layout_detection?: boolean | null
images_to_save?: Array<"screenshot" | "embedded" | "layout"> | null
Accepts one of the following:
"screenshot"
"embedded"
"layout"
inline_images_in_markdown?: boolean | null
input_s3_path?: string | null
input_s3_region?: string | null
input_url?: string | null
internal_is_screenshot_job?: boolean | null
invalidate_cache?: boolean | null
is_formatting_instruction?: boolean | null
job_timeout_extra_time_per_page_in_seconds?: number | null
job_timeout_in_seconds?: number | null
keep_page_separator_when_merging_tables?: boolean | null
languages?: Array<ParsingLanguages>
Accepts one of the following:
"af"
"az"
"bs"
"cs"
"cy"
"da"
"de"
"en"
"es"
"et"
"fr"
"ga"
"hr"
"hu"
"id"
"is"
"it"
"ku"
"la"
"lt"
"lv"
"mi"
"ms"
"mt"
"nl"
"no"
"oc"
"pi"
"pl"
"pt"
"ro"
"rs_latin"
"sk"
"sl"
"sq"
"sv"
"sw"
"tl"
"tr"
"uz"
"vi"
"ar"
"fa"
"ug"
"ur"
"bn"
"as"
"mni"
"ru"
"rs_cyrillic"
"be"
"bg"
"uk"
"mn"
"abq"
"ady"
"kbd"
"ava"
"dar"
"inh"
"che"
"lbe"
"lez"
"tab"
"tjk"
"hi"
"mr"
"ne"
"bh"
"mai"
"ang"
"bho"
"mah"
"sck"
"new"
"gom"
"sa"
"bgc"
"th"
"ch_sim"
"ch_tra"
"ja"
"ko"
"ta"
"te"
"kn"
layout_aware?: boolean | null
line_level_bounding_box?: boolean | null
markdown_table_multiline_header_separator?: string | null
max_pages?: number | null
max_pages_enforced?: number | null
merge_tables_across_pages_in_markdown?: boolean | null
model?: string | null
outlined_table_extraction?: boolean | null
output_pdf_of_document?: boolean | null
output_s3_path_prefix?: string | null
output_s3_region?: string | null
output_tables_as_HTML?: boolean | null
page_error_tolerance?: number | null
page_header_prefix?: string | null
page_header_suffix?: string | null
page_prefix?: string | null
page_separator?: string | null
page_suffix?: string | null
parse_mode?: ParsingMode | null

Enum for representing the mode of parsing to be used.

Accepts one of the following:
"parse_page_without_llm"
"parse_page_with_llm"
"parse_page_with_lvm"
"parse_page_with_agent"
"parse_page_with_layout_agent"
"parse_document_with_llm"
"parse_document_with_lvm"
"parse_document_with_agent"
parsing_instruction?: string | null
precise_bounding_box?: boolean | null
premium_mode?: boolean | null
presentation_out_of_bounds_content?: boolean | null
presentation_skip_embedded_data?: boolean | null
preserve_layout_alignment_across_pages?: boolean | null
preserve_very_small_text?: boolean | null
preset?: string | null
priority?: "low" | "medium" | "high" | "critical" | null

The priority for the request. This field may be ignored or overwritten depending on the organization tier.

Accepts one of the following:
"low"
"medium"
"high"
"critical"
project_id?: string | null
remove_hidden_text?: boolean | null
replace_failed_page_mode?: FailPageMode | null

Enum for representing the different available page error handling modes.

Accepts one of the following:
"raw_text"
"blank_page"
"error_message"
replace_failed_page_with_error_message_prefix?: string | null
replace_failed_page_with_error_message_suffix?: string | null
save_images?: boolean | null
skip_diagonal_text?: boolean | null
specialized_chart_parsing_agentic?: boolean | null
specialized_chart_parsing_efficient?: boolean | null
specialized_chart_parsing_plus?: boolean | null
specialized_image_parsing?: boolean | null
spreadsheet_extract_sub_tables?: boolean | null
spreadsheet_force_formula_computation?: boolean | null
strict_mode_buggy_font?: boolean | null
strict_mode_image_extraction?: boolean | null
strict_mode_image_ocr?: boolean | null
strict_mode_reconstruction?: boolean | null
structured_output?: boolean | null
structured_output_json_schema?: string | null
structured_output_json_schema_name?: string | null
system_prompt?: string | null
system_prompt_append?: string | null
take_screenshot?: boolean | null
target_pages?: string | null
tier?: string | null
use_vendor_multimodal_model?: boolean | null
user_prompt?: string | null
vendor_multimodal_api_key?: string | null
vendor_multimodal_model_name?: string | null
version?: string | null
webhook_configurations?: Array<WebhookConfiguration { webhook_events, webhook_headers, webhook_output_format, webhook_url } > | null

The outbound webhook configurations

webhook_events?: Array<"extract.pending" | "extract.success" | "extract.error" | 13 more> | null

List of event names to subscribe to

Accepts one of the following:
"extract.pending"
"extract.success"
"extract.error"
"extract.partial_success"
"extract.cancelled"
"parse.pending"
"parse.success"
"parse.error"
"parse.partial_success"
"parse.cancelled"
"classify.pending"
"classify.success"
"classify.error"
"classify.partial_success"
"classify.cancelled"
"unmapped_event"
webhook_headers?: Record<string, string> | null

Custom HTTP headers to include with webhook requests.

webhook_output_format?: string | null

The output format to use for the webhook. Defaults to string if none supplied. Currently supported values: string, json

webhook_url?: string | null

The URL to send webhook notifications to.

webhook_url?: string | null
LlmParameters { class_name, model_name, system_prompt, 3 more }
class_name?: string
model_name?: "GPT_4O" | "GPT_4O_MINI" | "GPT_4_1" | 11 more

The name of the model to use for LLM completions.

Accepts one of the following:
"GPT_4O"
"GPT_4O_MINI"
"GPT_4_1"
"GPT_4_1_NANO"
"GPT_4_1_MINI"
"AZURE_OPENAI_GPT_4O"
"AZURE_OPENAI_GPT_4O_MINI"
"AZURE_OPENAI_GPT_4_1"
"AZURE_OPENAI_GPT_4_1_MINI"
"AZURE_OPENAI_GPT_4_1_NANO"
"CLAUDE_4_5_SONNET"
"BEDROCK_CLAUDE_3_5_SONNET_V1"
"BEDROCK_CLAUDE_3_5_SONNET_V2"
"VERTEX_AI_CLAUDE_3_5_SONNET_V2"
system_prompt?: string | null

The system prompt to use for the completion.

maxLength3000
temperature?: number | null

The temperature value for the model.

use_chain_of_thought_reasoning?: boolean | null

Whether to use chain of thought reasoning.

use_citation?: boolean | null

Whether to show citations in the response.

ManagedIngestionStatusResponse { status, deployment_date, effective_at, 2 more }
status: "NOT_STARTED" | "IN_PROGRESS" | "SUCCESS" | 3 more

Status of the ingestion.

Accepts one of the following:
"NOT_STARTED"
"IN_PROGRESS"
"SUCCESS"
"ERROR"
"PARTIAL_SUCCESS"
"CANCELLED"
deployment_date?: string | null

Date of the deployment.

formatdate-time
effective_at?: string | null

When the status is effective

formatdate-time
error?: Array<Error> | null

List of errors that occurred during ingestion.

job_id: string

ID of the job that failed.

formatuuid
message: string

List of errors that occurred during ingestion.

step: "MANAGED_INGESTION" | "DATA_SOURCE" | "FILE_UPDATER" | 4 more

Name of the job that failed.

Accepts one of the following:
"MANAGED_INGESTION"
"DATA_SOURCE"
"FILE_UPDATER"
"PARSE"
"TRANSFORM"
"INGESTION"
"METADATA_UPDATE"
job_id?: string | null

ID of the latest job.

formatuuid
MessageRole = "system" | "developer" | "user" | 5 more

Message role.

Accepts one of the following:
"system"
"developer"
"user"
"assistant"
"function"
"tool"
"chatbot"
"model"
MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
OpenAIEmbedding { additional_kwargs, api_base, api_key, 10 more }
additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string | null

The base URL for OpenAI API.

api_key?: string | null

The OpenAI API key.

api_version?: string | null

The version for OpenAI API.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
OpenAIEmbeddingConfig { component, type }
component?: OpenAIEmbedding { additional_kwargs, api_base, api_key, 10 more }

Configuration for the OpenAI embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string | null

The base URL for OpenAI API.

api_key?: string | null

The OpenAI API key.

api_version?: string | null

The version for OpenAI API.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
type?: "OPENAI_EMBEDDING"

Type of the embedding model.

PageFigureNodeWithScore { node, score, class_name }

Page figure metadata with score

node: Node { confidence, figure_name, figure_size, 4 more }
confidence: number

The confidence of the figure

maximum1
minimum0
figure_name: string

The name of the figure

figure_size: number

The size of the figure in bytes

minimum0
file_id: string

The ID of the file that the figure was taken from

formatuuid
page_index: number

The index of the page for which the figure is taken (0-indexed)

minimum0
is_likely_noise?: boolean

Whether the figure is likely to be noise

metadata?: Record<string, unknown> | null

Metadata for the figure

score: number

The score of the figure node

class_name?: string
PageScreenshotNodeWithScore { node, score, class_name }

Page screenshot metadata with score

node: Node { file_id, image_size, page_index, metadata }
file_id: string

The ID of the file that the page screenshot was taken from

formatuuid
image_size: number

The size of the image in bytes

minimum0
page_index: number

The index of the page for which the screenshot is taken (0-indexed)

minimum0
metadata?: Record<string, unknown> | null

Metadata for the screenshot

score: number

The score of the screenshot node

class_name?: string
Pipeline { id, embedding_config, name, 15 more }

Schema for a pipeline.

id: string

Unique identifier

formatuuid
embedding_config: ManagedOpenAIEmbeddingConfig { component, type } | AzureOpenAIEmbeddingConfig { component, type } | CohereEmbeddingConfig { component, type } | 5 more
Accepts one of the following:
ManagedOpenAIEmbeddingConfig { component, type }
component?: Component { class_name, embed_batch_size, model_name, num_workers }

Configuration for the Managed OpenAI embedding model.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
model_name?: "openai-text-embedding-3-small"

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

type?: "MANAGED_OPENAI_EMBEDDING"

Type of the embedding model.

AzureOpenAIEmbeddingConfig { component, type }
component?: AzureOpenAIEmbedding { additional_kwargs, api_base, api_key, 12 more }

Configuration for the Azure OpenAI embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string

The base URL for Azure deployment.

api_key?: string | null

The OpenAI API key.

api_version?: string

The version for Azure OpenAI API.

azure_deployment?: string | null

The Azure deployment to use.

azure_endpoint?: string | null

The Azure endpoint to use.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
type?: "AZURE_EMBEDDING"

Type of the embedding model.

CohereEmbeddingConfig { component, type }
component?: CohereEmbedding { api_key, class_name, embed_batch_size, 5 more }

Configuration for the Cohere embedding model.

api_key: string | null

The Cohere API key.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embedding_type?: string

Embedding type. If not provided float embedding_type is used when needed.

input_type?: string | null

Model Input type. If not provided, search_document and search_query are used when needed.

model_name?: string

The modelId of the Cohere model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

truncate?: string

Truncation type - START/ END/ NONE

type?: "COHERE_EMBEDDING"

Type of the embedding model.

GeminiEmbeddingConfig { component, type }
component?: GeminiEmbedding { api_base, api_key, class_name, 6 more }

Configuration for the Gemini embedding model.

api_base?: string | null

API base to access the model. Defaults to None.

api_key?: string | null

API key to access the model. Defaults to None.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
model_name?: string

The modelId of the Gemini model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

task_type?: string | null

The task for embedding model.

title?: string | null

Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.

transport?: string | null

Transport to access the model. Defaults to None.

type?: "GEMINI_EMBEDDING"

Type of the embedding model.

HuggingFaceInferenceAPIEmbeddingConfig { component, type }
component?: HuggingFaceInferenceAPIEmbedding { token, class_name, cookies, 9 more }

Configuration for the HuggingFace Inference API embedding model.

token?: string | boolean | null

Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server.

Accepts one of the following:
string
boolean
class_name?: string
cookies?: Record<string, string> | null

Additional cookies to send to the server.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
headers?: Record<string, string> | null

Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values.

model_name?: string | null

Hugging Face model name. If None, the task will be used.

num_workers?: number | null

The number of workers to use for async embedding calls.

pooling?: "cls" | "mean" | "last" | null

Enum of possible pooling choices with pooling behaviors.

Accepts one of the following:
"cls"
"mean"
"last"
query_instruction?: string | null

Instruction to prepend during query embedding.

task?: string | null

Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None.

text_instruction?: string | null

Instruction to prepend during text embedding.

timeout?: number | null

The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.

type?: "HUGGINGFACE_API_EMBEDDING"

Type of the embedding model.

OpenAIEmbeddingConfig { component, type }
component?: OpenAIEmbedding { additional_kwargs, api_base, api_key, 10 more }

Configuration for the OpenAI embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string | null

The base URL for OpenAI API.

api_key?: string | null

The OpenAI API key.

api_version?: string | null

The version for OpenAI API.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
type?: "OPENAI_EMBEDDING"

Type of the embedding model.

VertexAIEmbeddingConfig { component, type }
component?: VertexTextEmbedding { client_email, location, private_key, 9 more }

Configuration for the VertexAI embedding model.

client_email: string | null

The client email for the VertexAI credentials.

location: string

The default location to use when making API calls.

private_key: string | null

The private key for the VertexAI credentials.

private_key_id: string | null

The private key ID for the VertexAI credentials.

project: string

The default GCP project to use when making Vertex API calls.

token_uri: string | null

The token URI for the VertexAI credentials.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the Vertex.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embed_mode?: "default" | "classification" | "clustering" | 2 more

The embedding mode to use.

Accepts one of the following:
"default"
"classification"
"clustering"
"similarity"
"retrieval"
model_name?: string

The modelId of the VertexAI model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

type?: "VERTEXAI_EMBEDDING"

Type of the embedding model.

BedrockEmbeddingConfig { component, type }
component?: BedrockEmbedding { additional_kwargs, aws_access_key_id, aws_secret_access_key, 9 more }

Configuration for the Bedrock embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the bedrock client.

aws_access_key_id?: string | null

AWS Access Key ID to use

aws_secret_access_key?: string | null

AWS Secret Access Key to use

aws_session_token?: string | null

AWS Session Token to use

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

The maximum number of API retries.

exclusiveMinimum0
model_name?: string

The modelId of the Bedrock model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

profile_name?: string | null

The name of aws profile to use. If not given, then the default profile is used.

region_name?: string | null

AWS region name to use. Uses region configured in AWS CLI if not passed

timeout?: number

The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.

type?: "BEDROCK_EMBEDDING"

Type of the embedding model.

name: string
project_id: string
config_hash?: ConfigHash | null

Hashes for the configuration of a pipeline.

embedding_config_hash?: string | null

Hash of the embedding config.

parsing_config_hash?: string | null

Hash of the llama parse parameters.

transform_config_hash?: string | null

Hash of the transform config.

created_at?: string | null

Creation datetime

formatdate-time
data_sink?: DataSink { id, component, name, 4 more } | null

Schema for a data sink.

id: string

Unique identifier

formatuuid
component: Record<string, unknown> | CloudPineconeVectorStore { api_key, index_name, class_name, 3 more } | CloudPostgresVectorStore { database, embed_dim, host, 10 more } | 5 more

Component that implements the data sink

Accepts one of the following:
Record<string, unknown>
CloudPineconeVectorStore { api_key, index_name, class_name, 3 more }

Cloud Pinecone Vector Store.

This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.

Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion

api_key: string

The API key for authenticating with Pinecone

formatpassword
index_name: string
class_name?: string
insert_kwargs?: Record<string, unknown> | null
namespace?: string | null
supports_nested_metadata_filters?: true
CloudPostgresVectorStore { database, embed_dim, host, 10 more }
database: string
embed_dim: number
host: string
password: string
port: number
schema_name: string
table_name: string
user: string
class_name?: string
hnsw_settings?: PgVectorHnswSettings { distance_method, ef_construction, ef_search, 2 more } | null

HNSW settings for PGVector.

distance_method?: "l2" | "ip" | "cosine" | 3 more

The distance method to use.

Accepts one of the following:
"l2"
"ip"
"cosine"
"l1"
"hamming"
"jaccard"
ef_construction?: number

The number of edges to use during the construction phase.

minimum1

The number of edges to use during the search phase.

minimum1
m?: number

The number of bi-directional links created for each new element.

minimum1
vector_type?: "vector" | "half_vec" | "bit" | "sparse_vec"

The type of vector to use.

Accepts one of the following:
"vector"
"half_vec"
"bit"
"sparse_vec"
perform_setup?: boolean
supports_nested_metadata_filters?: boolean
CloudQdrantVectorStore { api_key, collection_name, url, 4 more }

Cloud Qdrant Vector Store.

This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.

Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client

api_key: string
collection_name: string
url: string
class_name?: string
client_kwargs?: Record<string, unknown>
max_retries?: number
supports_nested_metadata_filters?: true
CloudAzureAISearchVectorStore { search_service_api_key, search_service_endpoint, class_name, 8 more }

Cloud Azure AI Search Vector Store.

search_service_api_key: string
search_service_endpoint: string
class_name?: string
client_id?: string | null
client_secret?: string | null
embedding_dimension?: number | null
filterable_metadata_field_keys?: Record<string, unknown> | null
index_name?: string | null
search_service_api_version?: string | null
supports_nested_metadata_filters?: true
tenant_id?: string | null

Cloud MongoDB Atlas Vector Store.

This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.

Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index

CloudMilvusVectorStore { uri, token, class_name, 3 more }

Cloud Milvus Vector Store.

uri: string
token?: string | null
class_name?: string
collection_name?: string | null
embedding_dimension?: number | null
supports_nested_metadata_filters?: boolean
CloudAstraDBVectorStore { token, api_endpoint, collection_name, 4 more }

Cloud AstraDB Vector Store.

This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.

Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'

token: string

The Astra DB Application Token to use

formatpassword
api_endpoint: string

The Astra DB JSON API endpoint for your database

collection_name: string

Collection name to use. If not existing, it will be created

embedding_dimension: number

Length of the embedding vectors in use

class_name?: string
keyspace?: string | null

The keyspace to use. If not provided, 'default_keyspace'

supports_nested_metadata_filters?: true
name: string

The name of the data sink.

project_id: string
sink_type: "PINECONE" | "POSTGRES" | "QDRANT" | 4 more
Accepts one of the following:
"PINECONE"
"POSTGRES"
"QDRANT"
"AZUREAI_SEARCH"
"MONGODB_ATLAS"
"MILVUS"
"ASTRA_DB"
created_at?: string | null

Creation datetime

formatdate-time
updated_at?: string | null

Update datetime

formatdate-time
embedding_model_config?: EmbeddingModelConfig | null

Schema for an embedding model config.

id: string

Unique identifier

formatuuid
embedding_config: AzureOpenAIEmbeddingConfig { component, type } | CohereEmbeddingConfig { component, type } | GeminiEmbeddingConfig { component, type } | 4 more

The embedding configuration for the embedding model config.

Accepts one of the following:
AzureOpenAIEmbeddingConfig { component, type }
component?: AzureOpenAIEmbedding { additional_kwargs, api_base, api_key, 12 more }

Configuration for the Azure OpenAI embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string

The base URL for Azure deployment.

api_key?: string | null

The OpenAI API key.

api_version?: string

The version for Azure OpenAI API.

azure_deployment?: string | null

The Azure deployment to use.

azure_endpoint?: string | null

The Azure endpoint to use.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
type?: "AZURE_EMBEDDING"

Type of the embedding model.

CohereEmbeddingConfig { component, type }
component?: CohereEmbedding { api_key, class_name, embed_batch_size, 5 more }

Configuration for the Cohere embedding model.

api_key: string | null

The Cohere API key.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embedding_type?: string

Embedding type. If not provided float embedding_type is used when needed.

input_type?: string | null

Model Input type. If not provided, search_document and search_query are used when needed.

model_name?: string

The modelId of the Cohere model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

truncate?: string

Truncation type - START/ END/ NONE

type?: "COHERE_EMBEDDING"

Type of the embedding model.

GeminiEmbeddingConfig { component, type }
component?: GeminiEmbedding { api_base, api_key, class_name, 6 more }

Configuration for the Gemini embedding model.

api_base?: string | null

API base to access the model. Defaults to None.

api_key?: string | null

API key to access the model. Defaults to None.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
model_name?: string

The modelId of the Gemini model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

task_type?: string | null

The task for embedding model.

title?: string | null

Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.

transport?: string | null

Transport to access the model. Defaults to None.

type?: "GEMINI_EMBEDDING"

Type of the embedding model.

HuggingFaceInferenceAPIEmbeddingConfig { component, type }
component?: HuggingFaceInferenceAPIEmbedding { token, class_name, cookies, 9 more }

Configuration for the HuggingFace Inference API embedding model.

token?: string | boolean | null

Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server.

Accepts one of the following:
string
boolean
class_name?: string
cookies?: Record<string, string> | null

Additional cookies to send to the server.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
headers?: Record<string, string> | null

Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values.

model_name?: string | null

Hugging Face model name. If None, the task will be used.

num_workers?: number | null

The number of workers to use for async embedding calls.

pooling?: "cls" | "mean" | "last" | null

Enum of possible pooling choices with pooling behaviors.

Accepts one of the following:
"cls"
"mean"
"last"
query_instruction?: string | null

Instruction to prepend during query embedding.

task?: string | null

Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None.

text_instruction?: string | null

Instruction to prepend during text embedding.

timeout?: number | null

The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.

type?: "HUGGINGFACE_API_EMBEDDING"

Type of the embedding model.

OpenAIEmbeddingConfig { component, type }
component?: OpenAIEmbedding { additional_kwargs, api_base, api_key, 10 more }

Configuration for the OpenAI embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string | null

The base URL for OpenAI API.

api_key?: string | null

The OpenAI API key.

api_version?: string | null

The version for OpenAI API.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
type?: "OPENAI_EMBEDDING"

Type of the embedding model.

VertexAIEmbeddingConfig { component, type }
component?: VertexTextEmbedding { client_email, location, private_key, 9 more }

Configuration for the VertexAI embedding model.

client_email: string | null

The client email for the VertexAI credentials.

location: string

The default location to use when making API calls.

private_key: string | null

The private key for the VertexAI credentials.

private_key_id: string | null

The private key ID for the VertexAI credentials.

project: string

The default GCP project to use when making Vertex API calls.

token_uri: string | null

The token URI for the VertexAI credentials.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the Vertex.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embed_mode?: "default" | "classification" | "clustering" | 2 more

The embedding mode to use.

Accepts one of the following:
"default"
"classification"
"clustering"
"similarity"
"retrieval"
model_name?: string

The modelId of the VertexAI model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

type?: "VERTEXAI_EMBEDDING"

Type of the embedding model.

BedrockEmbeddingConfig { component, type }
component?: BedrockEmbedding { additional_kwargs, aws_access_key_id, aws_secret_access_key, 9 more }

Configuration for the Bedrock embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the bedrock client.

aws_access_key_id?: string | null

AWS Access Key ID to use

aws_secret_access_key?: string | null

AWS Secret Access Key to use

aws_session_token?: string | null

AWS Session Token to use

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

The maximum number of API retries.

exclusiveMinimum0
model_name?: string

The modelId of the Bedrock model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

profile_name?: string | null

The name of aws profile to use. If not given, then the default profile is used.

region_name?: string | null

AWS region name to use. Uses region configured in AWS CLI if not passed

timeout?: number

The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.

type?: "BEDROCK_EMBEDDING"

Type of the embedding model.

name: string

The name of the embedding model config.

project_id: string
created_at?: string | null

Creation datetime

formatdate-time
updated_at?: string | null

Update datetime

formatdate-time
embedding_model_config_id?: string | null

The ID of the EmbeddingModelConfig this pipeline is using.

formatuuid
llama_parse_parameters?: LlamaParseParameters { adaptive_long_table, aggressive_table_extraction, annotate_links, 115 more } | null

Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline.

adaptive_long_table?: boolean | null
aggressive_table_extraction?: boolean | null
auto_mode?: boolean | null
auto_mode_configuration_json?: string | null
auto_mode_trigger_on_image_in_page?: boolean | null
auto_mode_trigger_on_regexp_in_page?: string | null
auto_mode_trigger_on_table_in_page?: boolean | null
auto_mode_trigger_on_text_in_page?: string | null
azure_openai_api_version?: string | null
azure_openai_deployment_name?: string | null
azure_openai_endpoint?: string | null
azure_openai_key?: string | null
bbox_bottom?: number | null
bbox_left?: number | null
bbox_right?: number | null
bbox_top?: number | null
bounding_box?: string | null
compact_markdown_table?: boolean | null
complemental_formatting_instruction?: string | null
content_guideline_instruction?: string | null
continuous_mode?: boolean | null
disable_image_extraction?: boolean | null
disable_ocr?: boolean | null
disable_reconstruction?: boolean | null
do_not_cache?: boolean | null
do_not_unroll_columns?: boolean | null
enable_cost_optimizer?: boolean | null
extract_charts?: boolean | null
extract_layout?: boolean | null
extract_printed_page_number?: boolean | null
fast_mode?: boolean | null
formatting_instruction?: string | null
gpt4o_api_key?: string | null
gpt4o_mode?: boolean | null
guess_xlsx_sheet_name?: boolean | null
hide_footers?: boolean | null
hide_headers?: boolean | null
high_res_ocr?: boolean | null
html_make_all_elements_visible?: boolean | null
html_remove_fixed_elements?: boolean | null
html_remove_navigation_elements?: boolean | null
http_proxy?: string | null
ignore_document_elements_for_layout_detection?: boolean | null
images_to_save?: Array<"screenshot" | "embedded" | "layout"> | null
Accepts one of the following:
"screenshot"
"embedded"
"layout"
inline_images_in_markdown?: boolean | null
input_s3_path?: string | null
input_s3_region?: string | null
input_url?: string | null
internal_is_screenshot_job?: boolean | null
invalidate_cache?: boolean | null
is_formatting_instruction?: boolean | null
job_timeout_extra_time_per_page_in_seconds?: number | null
job_timeout_in_seconds?: number | null
keep_page_separator_when_merging_tables?: boolean | null
languages?: Array<ParsingLanguages>
Accepts one of the following:
"af"
"az"
"bs"
"cs"
"cy"
"da"
"de"
"en"
"es"
"et"
"fr"
"ga"
"hr"
"hu"
"id"
"is"
"it"
"ku"
"la"
"lt"
"lv"
"mi"
"ms"
"mt"
"nl"
"no"
"oc"
"pi"
"pl"
"pt"
"ro"
"rs_latin"
"sk"
"sl"
"sq"
"sv"
"sw"
"tl"
"tr"
"uz"
"vi"
"ar"
"fa"
"ug"
"ur"
"bn"
"as"
"mni"
"ru"
"rs_cyrillic"
"be"
"bg"
"uk"
"mn"
"abq"
"ady"
"kbd"
"ava"
"dar"
"inh"
"che"
"lbe"
"lez"
"tab"
"tjk"
"hi"
"mr"
"ne"
"bh"
"mai"
"ang"
"bho"
"mah"
"sck"
"new"
"gom"
"sa"
"bgc"
"th"
"ch_sim"
"ch_tra"
"ja"
"ko"
"ta"
"te"
"kn"
layout_aware?: boolean | null
line_level_bounding_box?: boolean | null
markdown_table_multiline_header_separator?: string | null
max_pages?: number | null
max_pages_enforced?: number | null
merge_tables_across_pages_in_markdown?: boolean | null
model?: string | null
outlined_table_extraction?: boolean | null
output_pdf_of_document?: boolean | null
output_s3_path_prefix?: string | null
output_s3_region?: string | null
output_tables_as_HTML?: boolean | null
page_error_tolerance?: number | null
page_header_prefix?: string | null
page_header_suffix?: string | null
page_prefix?: string | null
page_separator?: string | null
page_suffix?: string | null
parse_mode?: ParsingMode | null

Enum for representing the mode of parsing to be used.

Accepts one of the following:
"parse_page_without_llm"
"parse_page_with_llm"
"parse_page_with_lvm"
"parse_page_with_agent"
"parse_page_with_layout_agent"
"parse_document_with_llm"
"parse_document_with_lvm"
"parse_document_with_agent"
parsing_instruction?: string | null
precise_bounding_box?: boolean | null
premium_mode?: boolean | null
presentation_out_of_bounds_content?: boolean | null
presentation_skip_embedded_data?: boolean | null
preserve_layout_alignment_across_pages?: boolean | null
preserve_very_small_text?: boolean | null
preset?: string | null
priority?: "low" | "medium" | "high" | "critical" | null

The priority for the request. This field may be ignored or overwritten depending on the organization tier.

Accepts one of the following:
"low"
"medium"
"high"
"critical"
project_id?: string | null
remove_hidden_text?: boolean | null
replace_failed_page_mode?: FailPageMode | null

Enum for representing the different available page error handling modes.

Accepts one of the following:
"raw_text"
"blank_page"
"error_message"
replace_failed_page_with_error_message_prefix?: string | null
replace_failed_page_with_error_message_suffix?: string | null
save_images?: boolean | null
skip_diagonal_text?: boolean | null
specialized_chart_parsing_agentic?: boolean | null
specialized_chart_parsing_efficient?: boolean | null
specialized_chart_parsing_plus?: boolean | null
specialized_image_parsing?: boolean | null
spreadsheet_extract_sub_tables?: boolean | null
spreadsheet_force_formula_computation?: boolean | null
strict_mode_buggy_font?: boolean | null
strict_mode_image_extraction?: boolean | null
strict_mode_image_ocr?: boolean | null
strict_mode_reconstruction?: boolean | null
structured_output?: boolean | null
structured_output_json_schema?: string | null
structured_output_json_schema_name?: string | null
system_prompt?: string | null
system_prompt_append?: string | null
take_screenshot?: boolean | null
target_pages?: string | null
tier?: string | null
use_vendor_multimodal_model?: boolean | null
user_prompt?: string | null
vendor_multimodal_api_key?: string | null
vendor_multimodal_model_name?: string | null
version?: string | null
webhook_configurations?: Array<WebhookConfiguration { webhook_events, webhook_headers, webhook_output_format, webhook_url } > | null

The outbound webhook configurations

webhook_events?: Array<"extract.pending" | "extract.success" | "extract.error" | 13 more> | null

List of event names to subscribe to

Accepts one of the following:
"extract.pending"
"extract.success"
"extract.error"
"extract.partial_success"
"extract.cancelled"
"parse.pending"
"parse.success"
"parse.error"
"parse.partial_success"
"parse.cancelled"
"classify.pending"
"classify.success"
"classify.error"
"classify.partial_success"
"classify.cancelled"
"unmapped_event"
webhook_headers?: Record<string, string> | null

Custom HTTP headers to include with webhook requests.

webhook_output_format?: string | null

The output format to use for the webhook. Defaults to string if none supplied. Currently supported values: string, json

webhook_url?: string | null

The URL to send webhook notifications to.

webhook_url?: string | null
managed_pipeline_id?: string | null

The ID of the ManagedPipeline this playground pipeline is linked to.

formatuuid
metadata_config?: PipelineMetadataConfig { excluded_embed_metadata_keys, excluded_llm_metadata_keys } | null

Metadata configuration for the pipeline.

excluded_embed_metadata_keys?: Array<string>

List of metadata keys to exclude from embeddings

excluded_llm_metadata_keys?: Array<string>

List of metadata keys to exclude from LLM during retrieval

pipeline_type?: PipelineType

Type of pipeline. Either PLAYGROUND or MANAGED.

Accepts one of the following:
"PLAYGROUND"
"MANAGED"
preset_retrieval_parameters?: PresetRetrievalParams { alpha, class_name, dense_similarity_cutoff, 11 more }

Preset retrieval parameters for the pipeline.

alpha?: number | null

Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.

maximum1
minimum0
class_name?: string
dense_similarity_cutoff?: number | null

Minimum similarity score wrt query for retrieval

maximum1
minimum0
dense_similarity_top_k?: number | null

Number of nodes for dense retrieval.

maximum100
minimum1
enable_reranking?: boolean | null

Enable reranking for retrieval

files_top_k?: number | null

Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).

maximum5
minimum1
rerank_top_n?: number | null

Number of reranked nodes for returning.

maximum100
minimum1
retrieval_mode?: RetrievalMode

The retrieval mode for the query.

Accepts one of the following:
"chunks"
"files_via_metadata"
"files_via_content"
"auto_routed"
Deprecatedretrieve_image_nodes?: boolean

Whether to retrieve image nodes.

retrieve_page_figure_nodes?: boolean

Whether to retrieve page figure nodes.

retrieve_page_screenshot_nodes?: boolean

Whether to retrieve page screenshot nodes.

search_filters?: MetadataFilters { filters, condition } | null

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
search_filters_inference_schema?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

JSON Schema that will be used to infer search_filters. Omit or leave as null to skip inference.

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
sparse_similarity_top_k?: number | null

Number of nodes for sparse retrieval.

maximum100
minimum1
sparse_model_config?: SparseModelConfig { class_name, model_type } | null

Configuration for sparse embedding models used in hybrid search.

This allows users to choose between Splade and BM25 models for sparse retrieval in managed data sinks.

class_name?: string
model_type?: "splade" | "bm25" | "auto"

The sparse model type to use. 'bm25' uses Qdrant's FastEmbed BM25 model (default for new pipelines), 'splade' uses HuggingFace Splade model, 'auto' selects based on deployment mode (BYOC uses term frequency, Cloud uses Splade).

Accepts one of the following:
"splade"
"bm25"
"auto"
status?: "CREATED" | "DELETING" | null

Status of the pipeline.

Accepts one of the following:
"CREATED"
"DELETING"
transform_config?: AutoTransformConfig { chunk_overlap, chunk_size, mode } | AdvancedModeTransformConfig { chunking_config, mode, segmentation_config }

Configuration for the transformation.

Accepts one of the following:
AutoTransformConfig { chunk_overlap, chunk_size, mode }
chunk_overlap?: number

Chunk overlap for the transformation.

chunk_size?: number

Chunk size for the transformation.

exclusiveMinimum0
mode?: "auto"
AdvancedModeTransformConfig { chunking_config, mode, segmentation_config }
chunking_config?: NoneChunkingConfig { mode } | CharacterChunkingConfig { chunk_overlap, chunk_size, mode } | TokenChunkingConfig { chunk_overlap, chunk_size, mode, separator } | 2 more

Configuration for the chunking.

Accepts one of the following:
NoneChunkingConfig { mode }
mode?: "none"
CharacterChunkingConfig { chunk_overlap, chunk_size, mode }
chunk_overlap?: number
chunk_size?: number
mode?: "character"
TokenChunkingConfig { chunk_overlap, chunk_size, mode, separator }
chunk_overlap?: number
chunk_size?: number
mode?: "token"
separator?: string
SentenceChunkingConfig { chunk_overlap, chunk_size, mode, 2 more }
chunk_overlap?: number
chunk_size?: number
mode?: "sentence"
paragraph_separator?: string
separator?: string
SemanticChunkingConfig { breakpoint_percentile_threshold, buffer_size, mode }
breakpoint_percentile_threshold?: number
buffer_size?: number
mode?: "semantic"
mode?: "advanced"
segmentation_config?: NoneSegmentationConfig { mode } | PageSegmentationConfig { mode, page_separator } | ElementSegmentationConfig { mode }

Configuration for the segmentation.

Accepts one of the following:
NoneSegmentationConfig { mode }
mode?: "none"
PageSegmentationConfig { mode, page_separator }
mode?: "page"
page_separator?: string
ElementSegmentationConfig { mode }
mode?: "element"
updated_at?: string | null

Update datetime

formatdate-time
PipelineCreate { name, data_sink, data_sink_id, 10 more }

Schema for creating a pipeline.

name: string
data_sink?: DataSinkCreate { component, name, sink_type } | null

Schema for creating a data sink.

component: Record<string, unknown> | CloudPineconeVectorStore { api_key, index_name, class_name, 3 more } | CloudPostgresVectorStore { database, embed_dim, host, 10 more } | 5 more

Component that implements the data sink

Accepts one of the following:
Record<string, unknown>
CloudPineconeVectorStore { api_key, index_name, class_name, 3 more }

Cloud Pinecone Vector Store.

This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.

Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion

api_key: string

The API key for authenticating with Pinecone

formatpassword
index_name: string
class_name?: string
insert_kwargs?: Record<string, unknown> | null
namespace?: string | null
supports_nested_metadata_filters?: true
CloudPostgresVectorStore { database, embed_dim, host, 10 more }
database: string
embed_dim: number
host: string
password: string
port: number
schema_name: string
table_name: string
user: string
class_name?: string
hnsw_settings?: PgVectorHnswSettings { distance_method, ef_construction, ef_search, 2 more } | null

HNSW settings for PGVector.

distance_method?: "l2" | "ip" | "cosine" | 3 more

The distance method to use.

Accepts one of the following:
"l2"
"ip"
"cosine"
"l1"
"hamming"
"jaccard"
ef_construction?: number

The number of edges to use during the construction phase.

minimum1

The number of edges to use during the search phase.

minimum1
m?: number

The number of bi-directional links created for each new element.

minimum1
vector_type?: "vector" | "half_vec" | "bit" | "sparse_vec"

The type of vector to use.

Accepts one of the following:
"vector"
"half_vec"
"bit"
"sparse_vec"
perform_setup?: boolean
supports_nested_metadata_filters?: boolean
CloudQdrantVectorStore { api_key, collection_name, url, 4 more }

Cloud Qdrant Vector Store.

This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.

Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client

api_key: string
collection_name: string
url: string
class_name?: string
client_kwargs?: Record<string, unknown>
max_retries?: number
supports_nested_metadata_filters?: true
CloudAzureAISearchVectorStore { search_service_api_key, search_service_endpoint, class_name, 8 more }

Cloud Azure AI Search Vector Store.

search_service_api_key: string
search_service_endpoint: string
class_name?: string
client_id?: string | null
client_secret?: string | null
embedding_dimension?: number | null
filterable_metadata_field_keys?: Record<string, unknown> | null
index_name?: string | null
search_service_api_version?: string | null
supports_nested_metadata_filters?: true
tenant_id?: string | null

Cloud MongoDB Atlas Vector Store.

This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.

Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index

CloudMilvusVectorStore { uri, token, class_name, 3 more }

Cloud Milvus Vector Store.

uri: string
token?: string | null
class_name?: string
collection_name?: string | null
embedding_dimension?: number | null
supports_nested_metadata_filters?: boolean
CloudAstraDBVectorStore { token, api_endpoint, collection_name, 4 more }

Cloud AstraDB Vector Store.

This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.

Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'

token: string

The Astra DB Application Token to use

formatpassword
api_endpoint: string

The Astra DB JSON API endpoint for your database

collection_name: string

Collection name to use. If not existing, it will be created

embedding_dimension: number

Length of the embedding vectors in use

class_name?: string
keyspace?: string | null

The keyspace to use. If not provided, 'default_keyspace'

supports_nested_metadata_filters?: true
name: string

The name of the data sink.

sink_type: "PINECONE" | "POSTGRES" | "QDRANT" | 4 more
Accepts one of the following:
"PINECONE"
"POSTGRES"
"QDRANT"
"AZUREAI_SEARCH"
"MONGODB_ATLAS"
"MILVUS"
"ASTRA_DB"
data_sink_id?: string | null

Data sink ID. When provided instead of data_sink, the data sink will be looked up by ID.

formatuuid
embedding_config?: AzureOpenAIEmbeddingConfig { component, type } | CohereEmbeddingConfig { component, type } | GeminiEmbeddingConfig { component, type } | 4 more | null
Accepts one of the following:
AzureOpenAIEmbeddingConfig { component, type }
component?: AzureOpenAIEmbedding { additional_kwargs, api_base, api_key, 12 more }

Configuration for the Azure OpenAI embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string

The base URL for Azure deployment.

api_key?: string | null

The OpenAI API key.

api_version?: string

The version for Azure OpenAI API.

azure_deployment?: string | null

The Azure deployment to use.

azure_endpoint?: string | null

The Azure endpoint to use.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
type?: "AZURE_EMBEDDING"

Type of the embedding model.

CohereEmbeddingConfig { component, type }
component?: CohereEmbedding { api_key, class_name, embed_batch_size, 5 more }

Configuration for the Cohere embedding model.

api_key: string | null

The Cohere API key.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embedding_type?: string

Embedding type. If not provided float embedding_type is used when needed.

input_type?: string | null

Model Input type. If not provided, search_document and search_query are used when needed.

model_name?: string

The modelId of the Cohere model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

truncate?: string

Truncation type - START/ END/ NONE

type?: "COHERE_EMBEDDING"

Type of the embedding model.

GeminiEmbeddingConfig { component, type }
component?: GeminiEmbedding { api_base, api_key, class_name, 6 more }

Configuration for the Gemini embedding model.

api_base?: string | null

API base to access the model. Defaults to None.

api_key?: string | null

API key to access the model. Defaults to None.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
model_name?: string

The modelId of the Gemini model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

task_type?: string | null

The task for embedding model.

title?: string | null

Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.

transport?: string | null

Transport to access the model. Defaults to None.

type?: "GEMINI_EMBEDDING"

Type of the embedding model.

HuggingFaceInferenceAPIEmbeddingConfig { component, type }
component?: HuggingFaceInferenceAPIEmbedding { token, class_name, cookies, 9 more }

Configuration for the HuggingFace Inference API embedding model.

token?: string | boolean | null

Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server.

Accepts one of the following:
string
boolean
class_name?: string
cookies?: Record<string, string> | null

Additional cookies to send to the server.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
headers?: Record<string, string> | null

Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values.

model_name?: string | null

Hugging Face model name. If None, the task will be used.

num_workers?: number | null

The number of workers to use for async embedding calls.

pooling?: "cls" | "mean" | "last" | null

Enum of possible pooling choices with pooling behaviors.

Accepts one of the following:
"cls"
"mean"
"last"
query_instruction?: string | null

Instruction to prepend during query embedding.

task?: string | null

Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None.

text_instruction?: string | null

Instruction to prepend during text embedding.

timeout?: number | null

The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.

type?: "HUGGINGFACE_API_EMBEDDING"

Type of the embedding model.

OpenAIEmbeddingConfig { component, type }
component?: OpenAIEmbedding { additional_kwargs, api_base, api_key, 10 more }

Configuration for the OpenAI embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the OpenAI API.

api_base?: string | null

The base URL for OpenAI API.

api_key?: string | null

The OpenAI API key.

api_version?: string | null

The version for OpenAI API.

class_name?: string
default_headers?: Record<string, string> | null

The default headers for API requests.

dimensions?: number | null

The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

Maximum number of retries.

minimum0
model_name?: string

The name of the OpenAI embedding model.

num_workers?: number | null

The number of workers to use for async embedding calls.

reuse_client?: boolean

Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

timeout?: number

Timeout for each request.

minimum0
type?: "OPENAI_EMBEDDING"

Type of the embedding model.

VertexAIEmbeddingConfig { component, type }
component?: VertexTextEmbedding { client_email, location, private_key, 9 more }

Configuration for the VertexAI embedding model.

client_email: string | null

The client email for the VertexAI credentials.

location: string

The default location to use when making API calls.

private_key: string | null

The private key for the VertexAI credentials.

private_key_id: string | null

The private key ID for the VertexAI credentials.

project: string

The default GCP project to use when making Vertex API calls.

token_uri: string | null

The token URI for the VertexAI credentials.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the Vertex.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embed_mode?: "default" | "classification" | "clustering" | 2 more

The embedding mode to use.

Accepts one of the following:
"default"
"classification"
"clustering"
"similarity"
"retrieval"
model_name?: string

The modelId of the VertexAI model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

type?: "VERTEXAI_EMBEDDING"

Type of the embedding model.

BedrockEmbeddingConfig { component, type }
component?: BedrockEmbedding { additional_kwargs, aws_access_key_id, aws_secret_access_key, 9 more }

Configuration for the Bedrock embedding model.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the bedrock client.

aws_access_key_id?: string | null

AWS Access Key ID to use

aws_secret_access_key?: string | null

AWS Secret Access Key to use

aws_session_token?: string | null

AWS Session Token to use

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
max_retries?: number

The maximum number of API retries.

exclusiveMinimum0
model_name?: string

The modelId of the Bedrock model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

profile_name?: string | null

The name of aws profile to use. If not given, then the default profile is used.

region_name?: string | null

AWS region name to use. Uses region configured in AWS CLI if not passed

timeout?: number

The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.

type?: "BEDROCK_EMBEDDING"

Type of the embedding model.

embedding_model_config_id?: string | null

Embedding model config ID. When provided instead of embedding_config, the embedding model config will be looked up by ID.

formatuuid
llama_parse_parameters?: LlamaParseParameters { adaptive_long_table, aggressive_table_extraction, annotate_links, 115 more }

Settings that can be configured for how to use LlamaParse to parse files within a LlamaCloud pipeline.

adaptive_long_table?: boolean | null
aggressive_table_extraction?: boolean | null
auto_mode?: boolean | null
auto_mode_configuration_json?: string | null
auto_mode_trigger_on_image_in_page?: boolean | null
auto_mode_trigger_on_regexp_in_page?: string | null
auto_mode_trigger_on_table_in_page?: boolean | null
auto_mode_trigger_on_text_in_page?: string | null
azure_openai_api_version?: string | null
azure_openai_deployment_name?: string | null
azure_openai_endpoint?: string | null
azure_openai_key?: string | null
bbox_bottom?: number | null
bbox_left?: number | null
bbox_right?: number | null
bbox_top?: number | null
bounding_box?: string | null
compact_markdown_table?: boolean | null
complemental_formatting_instruction?: string | null
content_guideline_instruction?: string | null
continuous_mode?: boolean | null
disable_image_extraction?: boolean | null
disable_ocr?: boolean | null
disable_reconstruction?: boolean | null
do_not_cache?: boolean | null
do_not_unroll_columns?: boolean | null
enable_cost_optimizer?: boolean | null
extract_charts?: boolean | null
extract_layout?: boolean | null
extract_printed_page_number?: boolean | null
fast_mode?: boolean | null
formatting_instruction?: string | null
gpt4o_api_key?: string | null
gpt4o_mode?: boolean | null
guess_xlsx_sheet_name?: boolean | null
hide_footers?: boolean | null
hide_headers?: boolean | null
high_res_ocr?: boolean | null
html_make_all_elements_visible?: boolean | null
html_remove_fixed_elements?: boolean | null
html_remove_navigation_elements?: boolean | null
http_proxy?: string | null
ignore_document_elements_for_layout_detection?: boolean | null
images_to_save?: Array<"screenshot" | "embedded" | "layout"> | null
Accepts one of the following:
"screenshot"
"embedded"
"layout"
inline_images_in_markdown?: boolean | null
input_s3_path?: string | null
input_s3_region?: string | null
input_url?: string | null
internal_is_screenshot_job?: boolean | null
invalidate_cache?: boolean | null
is_formatting_instruction?: boolean | null
job_timeout_extra_time_per_page_in_seconds?: number | null
job_timeout_in_seconds?: number | null
keep_page_separator_when_merging_tables?: boolean | null
languages?: Array<ParsingLanguages>
Accepts one of the following:
"af"
"az"
"bs"
"cs"
"cy"
"da"
"de"
"en"
"es"
"et"
"fr"
"ga"
"hr"
"hu"
"id"
"is"
"it"
"ku"
"la"
"lt"
"lv"
"mi"
"ms"
"mt"
"nl"
"no"
"oc"
"pi"
"pl"
"pt"
"ro"
"rs_latin"
"sk"
"sl"
"sq"
"sv"
"sw"
"tl"
"tr"
"uz"
"vi"
"ar"
"fa"
"ug"
"ur"
"bn"
"as"
"mni"
"ru"
"rs_cyrillic"
"be"
"bg"
"uk"
"mn"
"abq"
"ady"
"kbd"
"ava"
"dar"
"inh"
"che"
"lbe"
"lez"
"tab"
"tjk"
"hi"
"mr"
"ne"
"bh"
"mai"
"ang"
"bho"
"mah"
"sck"
"new"
"gom"
"sa"
"bgc"
"th"
"ch_sim"
"ch_tra"
"ja"
"ko"
"ta"
"te"
"kn"
layout_aware?: boolean | null
line_level_bounding_box?: boolean | null
markdown_table_multiline_header_separator?: string | null
max_pages?: number | null
max_pages_enforced?: number | null
merge_tables_across_pages_in_markdown?: boolean | null
model?: string | null
outlined_table_extraction?: boolean | null
output_pdf_of_document?: boolean | null
output_s3_path_prefix?: string | null
output_s3_region?: string | null
output_tables_as_HTML?: boolean | null
page_error_tolerance?: number | null
page_header_prefix?: string | null
page_header_suffix?: string | null
page_prefix?: string | null
page_separator?: string | null
page_suffix?: string | null
parse_mode?: ParsingMode | null

Enum for representing the mode of parsing to be used.

Accepts one of the following:
"parse_page_without_llm"
"parse_page_with_llm"
"parse_page_with_lvm"
"parse_page_with_agent"
"parse_page_with_layout_agent"
"parse_document_with_llm"
"parse_document_with_lvm"
"parse_document_with_agent"
parsing_instruction?: string | null
precise_bounding_box?: boolean | null
premium_mode?: boolean | null
presentation_out_of_bounds_content?: boolean | null
presentation_skip_embedded_data?: boolean | null
preserve_layout_alignment_across_pages?: boolean | null
preserve_very_small_text?: boolean | null
preset?: string | null
priority?: "low" | "medium" | "high" | "critical" | null

The priority for the request. This field may be ignored or overwritten depending on the organization tier.

Accepts one of the following:
"low"
"medium"
"high"
"critical"
project_id?: string | null
remove_hidden_text?: boolean | null
replace_failed_page_mode?: FailPageMode | null

Enum for representing the different available page error handling modes.

Accepts one of the following:
"raw_text"
"blank_page"
"error_message"
replace_failed_page_with_error_message_prefix?: string | null
replace_failed_page_with_error_message_suffix?: string | null
save_images?: boolean | null
skip_diagonal_text?: boolean | null
specialized_chart_parsing_agentic?: boolean | null
specialized_chart_parsing_efficient?: boolean | null
specialized_chart_parsing_plus?: boolean | null
specialized_image_parsing?: boolean | null
spreadsheet_extract_sub_tables?: boolean | null
spreadsheet_force_formula_computation?: boolean | null
strict_mode_buggy_font?: boolean | null
strict_mode_image_extraction?: boolean | null
strict_mode_image_ocr?: boolean | null
strict_mode_reconstruction?: boolean | null
structured_output?: boolean | null
structured_output_json_schema?: string | null
structured_output_json_schema_name?: string | null
system_prompt?: string | null
system_prompt_append?: string | null
take_screenshot?: boolean | null
target_pages?: string | null
tier?: string | null
use_vendor_multimodal_model?: boolean | null
user_prompt?: string | null
vendor_multimodal_api_key?: string | null
vendor_multimodal_model_name?: string | null
version?: string | null
webhook_configurations?: Array<WebhookConfiguration { webhook_events, webhook_headers, webhook_output_format, webhook_url } > | null

The outbound webhook configurations

webhook_events?: Array<"extract.pending" | "extract.success" | "extract.error" | 13 more> | null

List of event names to subscribe to

Accepts one of the following:
"extract.pending"
"extract.success"
"extract.error"
"extract.partial_success"
"extract.cancelled"
"parse.pending"
"parse.success"
"parse.error"
"parse.partial_success"
"parse.cancelled"
"classify.pending"
"classify.success"
"classify.error"
"classify.partial_success"
"classify.cancelled"
"unmapped_event"
webhook_headers?: Record<string, string> | null

Custom HTTP headers to include with webhook requests.

webhook_output_format?: string | null

The output format to use for the webhook. Defaults to string if none supplied. Currently supported values: string, json

webhook_url?: string | null

The URL to send webhook notifications to.

webhook_url?: string | null
managed_pipeline_id?: string | null

The ID of the ManagedPipeline this playground pipeline is linked to.

formatuuid
metadata_config?: PipelineMetadataConfig { excluded_embed_metadata_keys, excluded_llm_metadata_keys } | null

Metadata configuration for the pipeline.

excluded_embed_metadata_keys?: Array<string>

List of metadata keys to exclude from embeddings

excluded_llm_metadata_keys?: Array<string>

List of metadata keys to exclude from LLM during retrieval

pipeline_type?: PipelineType

Type of pipeline. Either PLAYGROUND or MANAGED.

Accepts one of the following:
"PLAYGROUND"
"MANAGED"
preset_retrieval_parameters?: PresetRetrievalParams { alpha, class_name, dense_similarity_cutoff, 11 more }

Preset retrieval parameters for the pipeline.

alpha?: number | null

Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.

maximum1
minimum0
class_name?: string
dense_similarity_cutoff?: number | null

Minimum similarity score wrt query for retrieval

maximum1
minimum0
dense_similarity_top_k?: number | null

Number of nodes for dense retrieval.

maximum100
minimum1
enable_reranking?: boolean | null

Enable reranking for retrieval

files_top_k?: number | null

Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).

maximum5
minimum1
rerank_top_n?: number | null

Number of reranked nodes for returning.

maximum100
minimum1
retrieval_mode?: RetrievalMode

The retrieval mode for the query.

Accepts one of the following:
"chunks"
"files_via_metadata"
"files_via_content"
"auto_routed"
Deprecatedretrieve_image_nodes?: boolean

Whether to retrieve image nodes.

retrieve_page_figure_nodes?: boolean

Whether to retrieve page figure nodes.

retrieve_page_screenshot_nodes?: boolean

Whether to retrieve page screenshot nodes.

search_filters?: MetadataFilters { filters, condition } | null

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
search_filters_inference_schema?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

JSON Schema that will be used to infer search_filters. Omit or leave as null to skip inference.

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
sparse_similarity_top_k?: number | null

Number of nodes for sparse retrieval.

maximum100
minimum1
sparse_model_config?: SparseModelConfig { class_name, model_type } | null

Configuration for sparse embedding models used in hybrid search.

This allows users to choose between Splade and BM25 models for sparse retrieval in managed data sinks.

class_name?: string
model_type?: "splade" | "bm25" | "auto"

The sparse model type to use. 'bm25' uses Qdrant's FastEmbed BM25 model (default for new pipelines), 'splade' uses HuggingFace Splade model, 'auto' selects based on deployment mode (BYOC uses term frequency, Cloud uses Splade).

Accepts one of the following:
"splade"
"bm25"
"auto"
status?: string | null

Status of the pipeline deployment.

transform_config?: AutoTransformConfig { chunk_overlap, chunk_size, mode } | AdvancedModeTransformConfig { chunking_config, mode, segmentation_config } | null

Configuration for the transformation.

Accepts one of the following:
AutoTransformConfig { chunk_overlap, chunk_size, mode }
chunk_overlap?: number

Chunk overlap for the transformation.

chunk_size?: number

Chunk size for the transformation.

exclusiveMinimum0
mode?: "auto"
AdvancedModeTransformConfig { chunking_config, mode, segmentation_config }
chunking_config?: NoneChunkingConfig { mode } | CharacterChunkingConfig { chunk_overlap, chunk_size, mode } | TokenChunkingConfig { chunk_overlap, chunk_size, mode, separator } | 2 more

Configuration for the chunking.

Accepts one of the following:
NoneChunkingConfig { mode }
mode?: "none"
CharacterChunkingConfig { chunk_overlap, chunk_size, mode }
chunk_overlap?: number
chunk_size?: number
mode?: "character"
TokenChunkingConfig { chunk_overlap, chunk_size, mode, separator }
chunk_overlap?: number
chunk_size?: number
mode?: "token"
separator?: string
SentenceChunkingConfig { chunk_overlap, chunk_size, mode, 2 more }
chunk_overlap?: number
chunk_size?: number
mode?: "sentence"
paragraph_separator?: string
separator?: string
SemanticChunkingConfig { breakpoint_percentile_threshold, buffer_size, mode }
breakpoint_percentile_threshold?: number
buffer_size?: number
mode?: "semantic"
mode?: "advanced"
segmentation_config?: NoneSegmentationConfig { mode } | PageSegmentationConfig { mode, page_separator } | ElementSegmentationConfig { mode }

Configuration for the segmentation.

Accepts one of the following:
NoneSegmentationConfig { mode }
mode?: "none"
PageSegmentationConfig { mode, page_separator }
mode?: "page"
page_separator?: string
ElementSegmentationConfig { mode }
mode?: "element"
PipelineMetadataConfig { excluded_embed_metadata_keys, excluded_llm_metadata_keys }
excluded_embed_metadata_keys?: Array<string>

List of metadata keys to exclude from embeddings

excluded_llm_metadata_keys?: Array<string>

List of metadata keys to exclude from LLM during retrieval

PipelineType = "PLAYGROUND" | "MANAGED"

Enum for representing the type of a pipeline

Accepts one of the following:
"PLAYGROUND"
"MANAGED"
PresetRetrievalParams { alpha, class_name, dense_similarity_cutoff, 11 more }

Schema for the search params for an retrieval execution that can be preset for a pipeline.

alpha?: number | null

Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.

maximum1
minimum0
class_name?: string
dense_similarity_cutoff?: number | null

Minimum similarity score wrt query for retrieval

maximum1
minimum0
dense_similarity_top_k?: number | null

Number of nodes for dense retrieval.

maximum100
minimum1
enable_reranking?: boolean | null

Enable reranking for retrieval

files_top_k?: number | null

Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).

maximum5
minimum1
rerank_top_n?: number | null

Number of reranked nodes for returning.

maximum100
minimum1
retrieval_mode?: RetrievalMode

The retrieval mode for the query.

Accepts one of the following:
"chunks"
"files_via_metadata"
"files_via_content"
"auto_routed"
Deprecatedretrieve_image_nodes?: boolean

Whether to retrieve image nodes.

retrieve_page_figure_nodes?: boolean

Whether to retrieve page figure nodes.

retrieve_page_screenshot_nodes?: boolean

Whether to retrieve page screenshot nodes.

search_filters?: MetadataFilters { filters, condition } | null

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: Array<MetadataFilter { key, value, operator } | MetadataFilters { filters, condition } >
Accepts one of the following:
MetadataFilter { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number | string | Array<string> | 2 more | null
Accepts one of the following:
number
string
Array<string>
Array<number>
Array<number>
operator?: "==" | ">" | "<" | 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
condition?: "and" | "or" | "not" | null

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
search_filters_inference_schema?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

JSON Schema that will be used to infer search_filters. Omit or leave as null to skip inference.

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
sparse_similarity_top_k?: number | null

Number of nodes for sparse retrieval.

maximum100
minimum1
RetrievalMode = "chunks" | "files_via_metadata" | "files_via_content" | "auto_routed"
Accepts one of the following:
"chunks"
"files_via_metadata"
"files_via_content"
"auto_routed"
SparseModelConfig { class_name, model_type }

Configuration for sparse embedding models used in hybrid search.

This allows users to choose between Splade and BM25 models for sparse retrieval in managed data sinks.

class_name?: string
model_type?: "splade" | "bm25" | "auto"

The sparse model type to use. 'bm25' uses Qdrant's FastEmbed BM25 model (default for new pipelines), 'splade' uses HuggingFace Splade model, 'auto' selects based on deployment mode (BYOC uses term frequency, Cloud uses Splade).

Accepts one of the following:
"splade"
"bm25"
"auto"
VertexAIEmbeddingConfig { component, type }
component?: VertexTextEmbedding { client_email, location, private_key, 9 more }

Configuration for the VertexAI embedding model.

client_email: string | null

The client email for the VertexAI credentials.

location: string

The default location to use when making API calls.

private_key: string | null

The private key for the VertexAI credentials.

private_key_id: string | null

The private key ID for the VertexAI credentials.

project: string

The default GCP project to use when making Vertex API calls.

token_uri: string | null

The token URI for the VertexAI credentials.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the Vertex.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embed_mode?: "default" | "classification" | "clustering" | 2 more

The embedding mode to use.

Accepts one of the following:
"default"
"classification"
"clustering"
"similarity"
"retrieval"
model_name?: string

The modelId of the VertexAI model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

type?: "VERTEXAI_EMBEDDING"

Type of the embedding model.

VertexTextEmbedding { client_email, location, private_key, 9 more }
client_email: string | null

The client email for the VertexAI credentials.

location: string

The default location to use when making API calls.

private_key: string | null

The private key for the VertexAI credentials.

private_key_id: string | null

The private key ID for the VertexAI credentials.

project: string

The default GCP project to use when making Vertex API calls.

token_uri: string | null

The token URI for the VertexAI credentials.

additional_kwargs?: Record<string, unknown>

Additional kwargs for the Vertex.

class_name?: string
embed_batch_size?: number

The batch size for embedding calls.

maximum2048
exclusiveMinimum0
embed_mode?: "default" | "classification" | "clustering" | 2 more

The embedding mode to use.

Accepts one of the following:
"default"
"classification"
"clustering"
"similarity"
"retrieval"
model_name?: string

The modelId of the VertexAI model to use.

num_workers?: number | null

The number of workers to use for async embedding calls.

PipelinesSync

Sync Pipeline
client.pipelines.sync.create(stringpipelineID, RequestOptionsoptions?): Pipeline { id, embedding_config, name, 15 more }
POST/api/v1/pipelines/{pipeline_id}/sync
Cancel Pipeline Sync
client.pipelines.sync.cancel(stringpipelineID, RequestOptionsoptions?): Pipeline { id, embedding_config, name, 15 more }
POST/api/v1/pipelines/{pipeline_id}/sync/cancel

PipelinesData Sources

List Pipeline Data Sources
client.pipelines.dataSources.getDataSources(stringpipelineID, RequestOptionsoptions?): DataSourceGetDataSourcesResponse { id, component, data_source_id, 13 more }
GET/api/v1/pipelines/{pipeline_id}/data-sources
Add Data Sources To Pipeline
client.pipelines.dataSources.updateDataSources(stringpipelineID, DataSourceUpdateDataSourcesParams { body } params, RequestOptionsoptions?): DataSourceUpdateDataSourcesResponse { id, component, data_source_id, 13 more }
PUT/api/v1/pipelines/{pipeline_id}/data-sources
Update Pipeline Data Source
client.pipelines.dataSources.update(stringdataSourceID, DataSourceUpdateParams { pipeline_id, sync_interval } params, RequestOptionsoptions?): PipelineDataSource { id, component, data_source_id, 13 more }
PUT/api/v1/pipelines/{pipeline_id}/data-sources/{data_source_id}
Get Pipeline Data Source Status
client.pipelines.dataSources.getStatus(stringdataSourceID, DataSourceGetStatusParams { pipeline_id } params, RequestOptionsoptions?): ManagedIngestionStatusResponse { status, deployment_date, effective_at, 2 more }
GET/api/v1/pipelines/{pipeline_id}/data-sources/{data_source_id}/status
Sync Pipeline Data Source
client.pipelines.dataSources.sync(stringdataSourceID, DataSourceSyncParams { pipeline_id, pipeline_file_ids } params, RequestOptionsoptions?): Pipeline { id, embedding_config, name, 15 more }
POST/api/v1/pipelines/{pipeline_id}/data-sources/{data_source_id}/sync
ModelsExpand Collapse
PipelineDataSource { id, component, data_source_id, 13 more }

Schema for a data source in a pipeline.

id: string

Unique identifier

formatuuid
component: Record<string, unknown> | CloudS3DataSource { bucket, aws_access_id, aws_access_secret, 5 more } | CloudAzStorageBlobDataSource { account_url, container_name, account_key, 8 more } | 8 more

Component that implements the data source

Accepts one of the following:
Record<string, unknown>
CloudS3DataSource { bucket, aws_access_id, aws_access_secret, 5 more }
bucket: string

The name of the S3 bucket to read from.

aws_access_id?: string | null

The AWS access ID to use for authentication.

aws_access_secret?: string | null

The AWS access secret to use for authentication.

formatpassword
class_name?: string
prefix?: string | null

The prefix of the S3 objects to read from.

regex_pattern?: string | null

The regex pattern to filter S3 objects. Must be a valid regex pattern.

s3_endpoint_url?: string | null

The S3 endpoint URL to use for authentication.

supports_access_control?: boolean
CloudAzStorageBlobDataSource { account_url, container_name, account_key, 8 more }
account_url: string

The Azure Storage Blob account URL to use for authentication.

container_name: string

The name of the Azure Storage Blob container to read from.

account_key?: string | null

The Azure Storage Blob account key to use for authentication.

formatpassword
account_name?: string | null

The Azure Storage Blob account name to use for authentication.

blob?: string | null

The blob name to read from.

class_name?: string
client_id?: string | null

The Azure AD client ID to use for authentication.

client_secret?: string | null

The Azure AD client secret to use for authentication.

formatpassword
prefix?: string | null

The prefix of the Azure Storage Blob objects to read from.

supports_access_control?: boolean
tenant_id?: string | null

The Azure AD tenant ID to use for authentication.

CloudOneDriveDataSource { client_id, client_secret, tenant_id, 6 more }
client_id: string

The client ID to use for authentication.

client_secret: string

The client secret to use for authentication.

formatpassword
tenant_id: string

The tenant ID to use for authentication.

user_principal_name: string

The user principal name to use for authentication.

class_name?: string
folder_id?: string | null

The ID of the OneDrive folder to read from.

folder_path?: string | null

The path of the OneDrive folder to read from.

required_exts?: Array<string> | null

The list of required file extensions.

supports_access_control?: true
CloudSharepointDataSource { client_id, client_secret, tenant_id, 11 more }
client_id: string

The client ID to use for authentication.

client_secret: string

The client secret to use for authentication.

formatpassword
tenant_id: string

The tenant ID to use for authentication.

class_name?: string
drive_name?: string | null

The name of the Sharepoint drive to read from.

exclude_path_patterns?: Array<string> | null

List of regex patterns for file paths to exclude. Files whose paths (including filename) match any pattern will be excluded. Example: ['/temp/', '/backup/', '.git/', '.tmp$', '^~']

folder_id?: string | null

The ID of the Sharepoint folder to read from.

folder_path?: string | null

The path of the Sharepoint folder to read from.

get_permissions?: boolean | null

Whether to get permissions for the sharepoint site.

include_path_patterns?: Array<string> | null

List of regex patterns for file paths to include. Full paths (including filename) must match at least one pattern to be included. Example: ['/reports/', '/docs/..pdf$', '^Report..pdf$']

required_exts?: Array<string> | null

The list of required file extensions.

site_id?: string | null

The ID of the SharePoint site to download from.

site_name?: string | null

The name of the SharePoint site to download from.

supports_access_control?: true
CloudSlackDataSource { slack_token, channel_ids, channel_patterns, 6 more }
slack_token: string

Slack Bot Token.

formatpassword
channel_ids?: string | null

Slack Channel.

channel_patterns?: string | null

Slack Channel name pattern.

class_name?: string
earliest_date?: string | null

Earliest date.

earliest_date_timestamp?: number | null

Earliest date timestamp.

latest_date?: string | null

Latest date.

latest_date_timestamp?: number | null

Latest date timestamp.

supports_access_control?: boolean
CloudNotionPageDataSource { integration_token, class_name, database_ids, 2 more }
integration_token: string

The integration token to use for authentication.

formatpassword
class_name?: string
database_ids?: string | null

The Notion Database Id to read content from.

page_ids?: string | null

The Page ID's of the Notion to read from.

supports_access_control?: boolean
CloudConfluenceDataSource { authentication_mechanism, server_url, api_token, 10 more }
authentication_mechanism: string

Type of Authentication for connecting to Confluence APIs.

server_url: string

The server URL of the Confluence instance.

api_token?: string | null

The API token to use for authentication.

formatpassword
class_name?: string
cql?: string | null

The CQL query to use for fetching pages.

failure_handling?: FailureHandlingConfig { skip_list_failures }

Configuration for handling failures during processing. Key-value object controlling failure handling behaviors.

Example: { "skip_list_failures": true }

Currently supports:

  • skip_list_failures: Skip failed batches/lists and continue processing
skip_list_failures?: boolean

Whether to skip failed batches/lists and continue processing

index_restricted_pages?: boolean

Whether to index restricted pages.

keep_markdown_format?: boolean

Whether to keep the markdown format.

label?: string | null

The label to use for fetching pages.

page_ids?: string | null

The page IDs of the Confluence to read from.

space_key?: string | null

The space key to read from.

supports_access_control?: boolean
user_name?: string | null

The username to use for authentication.

CloudJiraDataSource { authentication_mechanism, query, api_token, 5 more }

Cloud Jira Data Source integrating JiraReader.

authentication_mechanism: string

Type of Authentication for connecting to Jira APIs.

query: string

JQL (Jira Query Language) query to search.

api_token?: string | null

The API/ Access Token used for Basic, PAT and OAuth2 authentication.

formatpassword
class_name?: string
cloud_id?: string | null

The cloud ID, used in case of OAuth2.

email?: string | null

The email address to use for authentication.

server_url?: string | null

The server url for Jira Cloud.

supports_access_control?: boolean
CloudJiraDataSourceV2 { authentication_mechanism, query, server_url, 10 more }

Cloud Jira Data Source integrating JiraReaderV2.

authentication_mechanism: string

Type of Authentication for connecting to Jira APIs.

query: string

JQL (Jira Query Language) query to search.

server_url: string

The server url for Jira Cloud.

api_token?: string | null

The API Access Token used for Basic, PAT and OAuth2 authentication.

formatpassword
api_version?: "2" | "3"

Jira REST API version to use (2 or 3). 3 supports Atlassian Document Format (ADF).

Accepts one of the following:
"2"
"3"
class_name?: string
cloud_id?: string | null

The cloud ID, used in case of OAuth2.

email?: string | null

The email address to use for authentication.

expand?: string | null

Fields to expand in the response.

fields?: Array<string> | null

List of fields to retrieve from Jira. If None, retrieves all fields.

get_permissions?: boolean

Whether to fetch project role permissions and issue-level security

requests_per_minute?: number | null

Rate limit for Jira API requests per minute.

supports_access_control?: boolean
CloudBoxDataSource { authentication_mechanism, class_name, client_id, 6 more }
authentication_mechanism: "developer_token" | "ccg"

The type of authentication to use (Developer Token or CCG)

Accepts one of the following:
"developer_token"
"ccg"
class_name?: string
client_id?: string | null

Box API key used for identifying the application the user is authenticating with

client_secret?: string | null

Box API secret used for making auth requests.

formatpassword
developer_token?: string | null

Developer token for authentication if authentication_mechanism is 'developer_token'.

formatpassword
enterprise_id?: string | null

Box Enterprise ID, if provided authenticates as service.

folder_id?: string | null

The ID of the Box folder to read from.

supports_access_control?: boolean
user_id?: string | null

Box User ID, if provided authenticates as user.

data_source_id: string

The ID of the data source.

formatuuid
last_synced_at: string

The last time the data source was automatically synced.

formatdate-time
name: string

The name of the data source.

pipeline_id: string

The ID of the pipeline.

formatuuid
project_id: string
source_type: "S3" | "AZURE_STORAGE_BLOB" | "GOOGLE_DRIVE" | 8 more
Accepts one of the following:
"S3"
"AZURE_STORAGE_BLOB"
"GOOGLE_DRIVE"
"MICROSOFT_ONEDRIVE"
"MICROSOFT_SHAREPOINT"
"SLACK"
"NOTION_PAGE"
"CONFLUENCE"
"JIRA"
"JIRA_V2"
"BOX"
created_at?: string | null

Creation datetime

formatdate-time
custom_metadata?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

Custom metadata that will be present on all data loaded from the data source

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
status?: "NOT_STARTED" | "IN_PROGRESS" | "SUCCESS" | 2 more | null

The status of the data source in the pipeline.

Accepts one of the following:
"NOT_STARTED"
"IN_PROGRESS"
"SUCCESS"
"ERROR"
"CANCELLED"
status_updated_at?: string | null

The last time the status was updated.

formatdate-time
sync_interval?: number | null

The interval at which the data source should be synced.

sync_schedule_set_by?: string | null

The id of the user who set the sync schedule.

updated_at?: string | null

Update datetime

formatdate-time
version_metadata?: DataSourceReaderVersionMetadata { reader_version } | null

Version metadata for the data source

reader_version?: "1.0" | "2.0" | "2.1" | null

The version of the reader to use for this data source.

Accepts one of the following:
"1.0"
"2.0"
"2.1"

PipelinesImages

List File Page Screenshots
client.pipelines.images.listPageScreenshots(stringid, ImageListPageScreenshotsParams { organization_id, project_id } query?, RequestOptionsoptions?): ImageListPageScreenshotsResponse { file_id, image_size, page_index, metadata }
GET/api/v1/files/{id}/page_screenshots
Get File Page Screenshot
client.pipelines.images.getPageScreenshot(numberpageIndex, ImageGetPageScreenshotParams { id, organization_id, project_id } params, RequestOptionsoptions?): ImageGetPageScreenshotResponse
GET/api/v1/files/{id}/page_screenshots/{page_index}
Get File Page Figure
client.pipelines.images.getPageFigure(stringfigureName, ImageGetPageFigureParams { id, page_index, organization_id, project_id } params, RequestOptionsoptions?): ImageGetPageFigureResponse
GET/api/v1/files/{id}/page-figures/{page_index}/{figure_name}
List File Pages Figures
client.pipelines.images.listPageFigures(stringid, ImageListPageFiguresParams { organization_id, project_id } query?, RequestOptionsoptions?): ImageListPageFiguresResponse { confidence, figure_name, figure_size, 4 more }
GET/api/v1/files/{id}/page-figures

PipelinesFiles

Get Pipeline File Status Counts
client.pipelines.files.getStatusCounts(stringpipelineID, FileGetStatusCountsParams { data_source_id, only_manually_uploaded } query?, RequestOptionsoptions?): FileGetStatusCountsResponse { counts, total_count, data_source_id, 2 more }
GET/api/v1/pipelines/{pipeline_id}/files/status-counts
Get Pipeline File Status
client.pipelines.files.getStatus(stringfileID, FileGetStatusParams { pipeline_id } params, RequestOptionsoptions?): ManagedIngestionStatusResponse { status, deployment_date, effective_at, 2 more }
GET/api/v1/pipelines/{pipeline_id}/files/{file_id}/status
Add Files To Pipeline Api
client.pipelines.files.create(stringpipelineID, FileCreateParams { body } params, RequestOptionsoptions?): FileCreateResponse { id, pipeline_id, config_hash, 16 more }
PUT/api/v1/pipelines/{pipeline_id}/files
Update Pipeline File
client.pipelines.files.update(stringfileID, FileUpdateParams { pipeline_id, custom_metadata } params, RequestOptionsoptions?): PipelineFile { id, pipeline_id, config_hash, 16 more }
PUT/api/v1/pipelines/{pipeline_id}/files/{file_id}
Delete Pipeline File
client.pipelines.files.delete(stringfileID, FileDeleteParams { pipeline_id } params, RequestOptionsoptions?): void
DELETE/api/v1/pipelines/{pipeline_id}/files/{file_id}
List Pipeline Files2
Deprecated
client.pipelines.files.list(stringpipelineID, FileListParams { data_source_id, file_name_contains, limit, 3 more } query?, RequestOptionsoptions?): PaginatedPipelineFiles<PipelineFile { id, pipeline_id, config_hash, 16 more } >
GET/api/v1/pipelines/{pipeline_id}/files2
ModelsExpand Collapse
PipelineFile { id, pipeline_id, config_hash, 16 more }

Schema for a file that is associated with a pipeline.

id: string

Unique identifier

formatuuid
pipeline_id: string

The ID of the pipeline that the file is associated with

formatuuid
config_hash?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

Hashes for the configuration of the pipeline.

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
created_at?: string | null

Creation datetime

formatdate-time
custom_metadata?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

Custom metadata for the file

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
data_source_id?: string | null

The ID of the data source that the file belongs to

formatuuid
external_file_id?: string | null

The ID of the file in the external system

file_id?: string | null

The ID of the file

formatuuid
file_size?: number | null

Size of the file in bytes

minimum0
file_type?: string | null

File type (e.g. pdf, docx, etc.)

maxLength3000
minLength1
indexed_page_count?: number | null

The number of pages that have been indexed for this file

last_modified_at?: string | null

The last modified time of the file

formatdate-time
name?: string | null

Name of the file

maxLength3000
minLength1
permission_info?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

Permission information for the file

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
project_id?: string | null

The ID of the project that the file belongs to

formatuuid
resource_info?: Record<string, Record<string, unknown> | Array<unknown> | string | 2 more | null> | null

Resource information for the file

Accepts one of the following:
Record<string, unknown>
Array<unknown>
string
number
boolean
status?: "NOT_STARTED" | "IN_PROGRESS" | "SUCCESS" | 2 more | null

Status of the pipeline file

Accepts one of the following:
"NOT_STARTED"
"IN_PROGRESS"
"SUCCESS"
"ERROR"
"CANCELLED"
status_updated_at?: string | null

The last time the status was updated

formatdate-time
updated_at?: string | null

Update datetime

formatdate-time

PipelinesMetadata

Import Pipeline Metadata
client.pipelines.metadata.create(stringpipelineID, MetadataCreateParams { upload_file } body, RequestOptionsoptions?): MetadataCreateResponse
PUT/api/v1/pipelines/{pipeline_id}/metadata
Delete Pipeline Files Metadata
client.pipelines.metadata.deleteAll(stringpipelineID, RequestOptionsoptions?): void
DELETE/api/v1/pipelines/{pipeline_id}/metadata

PipelinesDocuments

Create Batch Pipeline Documents
client.pipelines.documents.create(stringpipelineID, DocumentCreateParams { body } params, RequestOptionsoptions?): DocumentCreateResponse { id, metadata, text, 4 more }
POST/api/v1/pipelines/{pipeline_id}/documents
Paginated List Pipeline Documents
client.pipelines.documents.list(stringpipelineID, DocumentListParams { file_id, limit, only_api_data_source_documents, 3 more } query?, RequestOptionsoptions?): PaginatedCloudDocuments<CloudDocument { id, metadata, text, 4 more } >
GET/api/v1/pipelines/{pipeline_id}/documents/paginated
Get Pipeline Document
client.pipelines.documents.get(stringdocumentID, DocumentGetParams { pipeline_id } params, RequestOptionsoptions?): CloudDocument { id, metadata, text, 4 more }
GET/api/v1/pipelines/{pipeline_id}/documents/{document_id}
Delete Pipeline Document
client.pipelines.documents.delete(stringdocumentID, DocumentDeleteParams { pipeline_id } params, RequestOptionsoptions?): void
DELETE/api/v1/pipelines/{pipeline_id}/documents/{document_id}
Get Pipeline Document Status
client.pipelines.documents.getStatus(stringdocumentID, DocumentGetStatusParams { pipeline_id } params, RequestOptionsoptions?): ManagedIngestionStatusResponse { status, deployment_date, effective_at, 2 more }
GET/api/v1/pipelines/{pipeline_id}/documents/{document_id}/status
Sync Pipeline Document
client.pipelines.documents.sync(stringdocumentID, DocumentSyncParams { pipeline_id } params, RequestOptionsoptions?): DocumentSyncResponse
POST/api/v1/pipelines/{pipeline_id}/documents/{document_id}/sync
List Pipeline Document Chunks
client.pipelines.documents.getChunks(stringdocumentID, DocumentGetChunksParams { pipeline_id } params, RequestOptionsoptions?): DocumentGetChunksResponse { class_name, embedding, end_char_idx, 11 more }
GET/api/v1/pipelines/{pipeline_id}/documents/{document_id}/chunks
Upsert Batch Pipeline Documents
client.pipelines.documents.upsert(stringpipelineID, DocumentUpsertParams { body } params, RequestOptionsoptions?): DocumentUpsertResponse { id, metadata, text, 4 more }
PUT/api/v1/pipelines/{pipeline_id}/documents
ModelsExpand Collapse
CloudDocument { id, metadata, text, 4 more }

Cloud document stored in S3.

id: string
metadata: Record<string, unknown>
text: string
excluded_embed_metadata_keys?: Array<string>
excluded_llm_metadata_keys?: Array<string>
page_positions?: Array<number> | null

indices in the CloudDocument.text where a new page begins. e.g. Second page starts at index specified by page_positions[1].

status_metadata?: Record<string, unknown> | null
CloudDocumentCreate { metadata, text, id, 3 more }

Create a new cloud document.

metadata: Record<string, unknown>
text: string
id?: string | null
excluded_embed_metadata_keys?: Array<string>
excluded_llm_metadata_keys?: Array<string>
page_positions?: Array<number> | null

indices in the CloudDocument.text where a new page begins. e.g. Second page starts at index specified by page_positions[1].

TextNode { class_name, embedding, end_char_idx, 11 more }

Provided for backward compatibility.

Note: we keep the field with the typo "seperator" to maintain backward compatibility for serialized objects.

class_name?: string
embedding?: Array<number> | null

Embedding of the node.

end_char_idx?: number | null

End char index of the node.

excluded_embed_metadata_keys?: Array<string>

Metadata keys that are excluded from text for the embed model.

excluded_llm_metadata_keys?: Array<string>

Metadata keys that are excluded from text for the LLM.

extra_info?: Record<string, unknown>

A flat dictionary of metadata fields

id_?: string

Unique ID of the node.

metadata_seperator?: string

Separator between metadata fields when converting to string.

metadata_template?: string

Template for how metadata is formatted, with {key} and {value} placeholders.

mimetype?: string

MIME type of the node content.

relationships?: Record<string, RelatedNodeInfo { node_id, class_name, hash, 2 more } | Array<UnionMember1>>

A mapping of relationships to other node information.

Accepts one of the following:
RelatedNodeInfo { node_id, class_name, hash, 2 more }
node_id: string
class_name?: string
hash?: string | null
metadata?: Record<string, unknown>
node_type?: "1" | "2" | "3" | 2 more | (string & {}) | null
Accepts one of the following:
"1" | "2" | "3" | 2 more
"1"
"2"
"3"
"4"
"5"
(string & {})
Array<UnionMember1>
node_id: string
class_name?: string
hash?: string | null
metadata?: Record<string, unknown>
node_type?: "1" | "2" | "3" | 2 more | (string & {}) | null
Accepts one of the following:
"1" | "2" | "3" | 2 more
"1"
"2"
"3"
"4"
"5"
(string & {})
start_char_idx?: number | null

Start char index of the node.

text?: string

Text content of the node.

text_template?: string

Template for how text is formatted, with {content} and {metadata_str} placeholders.