Data Sinks
List Data Sinks
Create Data Sink
Get Data Sink
Update Data Sink
Delete Data Sink
ModelsExpand Collapse
DataSink = object { id, component, name, 4 more }
Schema for a data sink.
id: string
Unique identifier
component: map[unknown] or CloudPineconeVectorStore { api_key, index_name, class_name, 3 more } or CloudPostgresVectorStore { database, embed_dim, host, 10 more } or 5 more
Component that implements the data sink
CloudPineconeVectorStore = object { api_key, index_name, class_name, 3 more }
Cloud Pinecone Vector Store.
This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.
Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion
api_key: string
The API key for authenticating with Pinecone
CloudPostgresVectorStore = object { database, embed_dim, host, 10 more }
hnsw_settings: optional PgVectorHnswSettings { distance_method, ef_construction, ef_search, 2 more }
HNSW settings for PGVector.
distance_method: optional "l2" or "ip" or "cosine" or 3 more
The distance method to use.
ef_construction: optional number
The number of edges to use during the construction phase.
ef_search: optional number
The number of edges to use during the search phase.
m: optional number
The number of bi-directional links created for each new element.
vector_type: optional "vector" or "half_vec" or "bit" or "sparse_vec"
The type of vector to use.
CloudQdrantVectorStore = object { api_key, collection_name, url, 4 more }
Cloud Qdrant Vector Store.
This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.
Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client
CloudAzureAISearchVectorStore = object { search_service_api_key, search_service_endpoint, class_name, 8 more }
Cloud Azure AI Search Vector Store.
CloudMongoDBAtlasVectorSearch = object { collection_name, db_name, mongodb_uri, 5 more }
Cloud MongoDB Atlas Vector Store.
This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.
Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index
CloudMilvusVectorStore = object { uri, token, class_name, 3 more }
Cloud Milvus Vector Store.
CloudAstraDBVectorStore = object { token, api_endpoint, collection_name, 4 more }
Cloud AstraDB Vector Store.
This class is used to store the configuration for an AstraDB vector store, so that it can be created and used in LlamaCloud.
Args: token (str): The Astra DB Application Token to use. api_endpoint (str): The Astra DB JSON API endpoint for your database. collection_name (str): Collection name to use. If not existing, it will be created. embedding_dimension (int): Length of the embedding vectors in use. keyspace (optional[str]): The keyspace to use. If not provided, 'default_keyspace'
token: string
The Astra DB Application Token to use
api_endpoint: string
The Astra DB JSON API endpoint for your database
collection_name: string
Collection name to use. If not existing, it will be created
embedding_dimension: number
Length of the embedding vectors in use
keyspace: optional string
The keyspace to use. If not provided, 'default_keyspace'
name: string
The name of the data sink.
sink_type: "PINECONE" or "POSTGRES" or "QDRANT" or 4 more
created_at: optional string
Creation datetime
updated_at: optional string
Update datetime