Skip to content
Get started

Retrievers

Create Retriever
POST/api/v1/retrievers
Upsert Retriever
PUT/api/v1/retrievers
List Retrievers
GET/api/v1/retrievers
Get Retriever
GET/api/v1/retrievers/{retriever_id}
Update Retriever
PUT/api/v1/retrievers/{retriever_id}
Delete Retriever
DELETE/api/v1/retrievers/{retriever_id}
Direct Retrieve
POST/api/v1/retrievers/retrieve
ModelsExpand Collapse
CompositeRetrievalMode = "routing" or "full"

Enum for the mode of composite retrieval.

Accepts one of the following:
"routing"
"full"
CompositeRetrievalResult = object { image_nodes, nodes, page_figure_nodes }
Deprecatedimage_nodes: optional array of PageScreenshotNodeWithScore { node, score, class_name }

The image nodes retrieved by the pipeline for the given query. Deprecated - will soon be replaced with 'page_screenshot_nodes'.

node: object { file_id, image_size, page_index, metadata }
file_id: string

The ID of the file that the page screenshot was taken from

formatuuid
image_size: number

The size of the image in bytes

minimum0
page_index: number

The index of the page for which the screenshot is taken (0-indexed)

minimum0
metadata: optional map[unknown]

Metadata for the screenshot

score: number

The score of the screenshot node

class_name: optional string
nodes: optional array of object { node, class_name, score }

The retrieved nodes from the composite retrieval.

node: object { id, end_char_idx, pipeline_id, 5 more }
id: string

The ID of the retrieved node.

formatuuid
end_char_idx: number

The end character index of the retrieved node in the document

pipeline_id: string

The ID of the pipeline this node was retrieved from.

formatuuid
retriever_id: string

The ID of the retriever this node was retrieved from.

formatuuid
retriever_pipeline_name: string

The name of the retrieval pipeline this node was retrieved from.

start_char_idx: number

The start character index of the retrieved node in the document

text: string

The text of the retrieved node.

metadata: optional map[unknown]

Metadata associated with the retrieved node.

class_name: optional string
score: optional number
page_figure_nodes: optional array of PageFigureNodeWithScore { node, score, class_name }

The page figure nodes retrieved by the pipeline for the given query.

node: object { confidence, figure_name, figure_size, 4 more }
confidence: number

The confidence of the figure

maximum1
minimum0
figure_name: string

The name of the figure

figure_size: number

The size of the figure in bytes

minimum0
file_id: string

The ID of the file that the figure was taken from

formatuuid
page_index: number

The index of the page for which the figure is taken (0-indexed)

minimum0
is_likely_noise: optional boolean

Whether the figure is likely to be noise

metadata: optional map[unknown]

Metadata for the figure

score: number

The score of the figure node

class_name: optional string
ReRankConfig = object { top_n, type }
top_n: optional number

The number of nodes to retrieve after reranking over retrieved nodes from all retrieval tools.

minimum1
type: optional "system_default" or "llm" or "cohere" or 3 more

The type of reranker to use.

Accepts one of the following:
"system_default"
"llm"
"cohere"
"bedrock"
"score"
"disabled"
Retriever = object { id, name, project_id, 3 more }

An entity that retrieves context nodes from several sub RetrieverTools.

id: string

Unique identifier

formatuuid
name: string

A name for the retriever tool. Will default to the pipeline name if not provided.

maxLength3000
minLength1
project_id: string

The ID of the project this retriever resides in.

formatuuid
created_at: optional string

Creation datetime

formatdate-time
pipelines: optional array of RetrieverPipeline { description, name, pipeline_id, preset_retrieval_parameters }

The pipelines this retriever uses.

description: string

A description of the retriever tool.

maxLength15000
name: string

A name for the retriever tool. Will default to the pipeline name if not provided.

maxLength3000
minLength1
pipeline_id: string

The ID of the pipeline this tool uses.

formatuuid
preset_retrieval_parameters: optional PresetRetrievalParams { alpha, class_name, dense_similarity_cutoff, 11 more }

Parameters for retrieval configuration.

alpha: optional number

Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.

maximum1
minimum0
class_name: optional string
dense_similarity_cutoff: optional number

Minimum similarity score wrt query for retrieval

maximum1
minimum0
dense_similarity_top_k: optional number

Number of nodes for dense retrieval.

maximum100
minimum1
enable_reranking: optional boolean

Enable reranking for retrieval

files_top_k: optional number

Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).

maximum5
minimum1
rerank_top_n: optional number

Number of reranked nodes for returning.

maximum100
minimum1
retrieval_mode: optional RetrievalMode

The retrieval mode for the query.

Accepts one of the following:
"chunks"
"files_via_metadata"
"files_via_content"
"auto_routed"
Deprecatedretrieve_image_nodes: optional boolean

Whether to retrieve image nodes.

retrieve_page_figure_nodes: optional boolean

Whether to retrieve page figure nodes.

retrieve_page_screenshot_nodes: optional boolean

Whether to retrieve page screenshot nodes.

search_filters: optional MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: array of object { key, value, operator } or MetadataFilters { filters, condition }
Accepts one of the following:
MetadataFilter = object { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number or string or array of string or 2 more
Accepts one of the following:
UnionMember0 = number
UnionMember1 = string
UnionMember2 = array of string
UnionMember3 = array of number
UnionMember4 = array of number
operator: optional "==" or ">" or "<" or 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters = object { filters, condition }

Metadata filters for vector stores.

filters: array of object { key, value, operator } or MetadataFilters { filters, condition }
Accepts one of the following:
MetadataFilter = object { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number or string or array of string or 2 more
Accepts one of the following:
UnionMember0 = number
UnionMember1 = string
UnionMember2 = array of string
UnionMember3 = array of number
UnionMember4 = array of number
operator: optional "==" or ">" or "<" or 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }
condition: optional "and" or "or" or "not"

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
condition: optional "and" or "or" or "not"

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
search_filters_inference_schema: optional map[map[unknown] or array of unknown or string or 2 more]

JSON Schema that will be used to infer search_filters. Omit or leave as null to skip inference.

Accepts one of the following:
UnionMember0 = map[unknown]
UnionMember1 = array of unknown
UnionMember2 = string
UnionMember3 = number
UnionMember4 = boolean
sparse_similarity_top_k: optional number

Number of nodes for sparse retrieval.

maximum100
minimum1
updated_at: optional string

Update datetime

formatdate-time
RetrieverCreate = object { name, pipelines }
name: string

A name for the retriever tool. Will default to the pipeline name if not provided.

maxLength3000
minLength1
pipelines: optional array of RetrieverPipeline { description, name, pipeline_id, preset_retrieval_parameters }

The pipelines this retriever uses.

description: string

A description of the retriever tool.

maxLength15000
name: string

A name for the retriever tool. Will default to the pipeline name if not provided.

maxLength3000
minLength1
pipeline_id: string

The ID of the pipeline this tool uses.

formatuuid
preset_retrieval_parameters: optional PresetRetrievalParams { alpha, class_name, dense_similarity_cutoff, 11 more }

Parameters for retrieval configuration.

alpha: optional number

Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.

maximum1
minimum0
class_name: optional string
dense_similarity_cutoff: optional number

Minimum similarity score wrt query for retrieval

maximum1
minimum0
dense_similarity_top_k: optional number

Number of nodes for dense retrieval.

maximum100
minimum1
enable_reranking: optional boolean

Enable reranking for retrieval

files_top_k: optional number

Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).

maximum5
minimum1
rerank_top_n: optional number

Number of reranked nodes for returning.

maximum100
minimum1
retrieval_mode: optional RetrievalMode

The retrieval mode for the query.

Accepts one of the following:
"chunks"
"files_via_metadata"
"files_via_content"
"auto_routed"
Deprecatedretrieve_image_nodes: optional boolean

Whether to retrieve image nodes.

retrieve_page_figure_nodes: optional boolean

Whether to retrieve page figure nodes.

retrieve_page_screenshot_nodes: optional boolean

Whether to retrieve page screenshot nodes.

search_filters: optional MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: array of object { key, value, operator } or MetadataFilters { filters, condition }
Accepts one of the following:
MetadataFilter = object { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number or string or array of string or 2 more
Accepts one of the following:
UnionMember0 = number
UnionMember1 = string
UnionMember2 = array of string
UnionMember3 = array of number
UnionMember4 = array of number
operator: optional "==" or ">" or "<" or 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters = object { filters, condition }

Metadata filters for vector stores.

filters: array of object { key, value, operator } or MetadataFilters { filters, condition }
Accepts one of the following:
MetadataFilter = object { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number or string or array of string or 2 more
Accepts one of the following:
UnionMember0 = number
UnionMember1 = string
UnionMember2 = array of string
UnionMember3 = array of number
UnionMember4 = array of number
operator: optional "==" or ">" or "<" or 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }
condition: optional "and" or "or" or "not"

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
condition: optional "and" or "or" or "not"

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
search_filters_inference_schema: optional map[map[unknown] or array of unknown or string or 2 more]

JSON Schema that will be used to infer search_filters. Omit or leave as null to skip inference.

Accepts one of the following:
UnionMember0 = map[unknown]
UnionMember1 = array of unknown
UnionMember2 = string
UnionMember3 = number
UnionMember4 = boolean
sparse_similarity_top_k: optional number

Number of nodes for sparse retrieval.

maximum100
minimum1
RetrieverPipeline = object { description, name, pipeline_id, preset_retrieval_parameters }
description: string

A description of the retriever tool.

maxLength15000
name: string

A name for the retriever tool. Will default to the pipeline name if not provided.

maxLength3000
minLength1
pipeline_id: string

The ID of the pipeline this tool uses.

formatuuid
preset_retrieval_parameters: optional PresetRetrievalParams { alpha, class_name, dense_similarity_cutoff, 11 more }

Parameters for retrieval configuration.

alpha: optional number

Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.

maximum1
minimum0
class_name: optional string
dense_similarity_cutoff: optional number

Minimum similarity score wrt query for retrieval

maximum1
minimum0
dense_similarity_top_k: optional number

Number of nodes for dense retrieval.

maximum100
minimum1
enable_reranking: optional boolean

Enable reranking for retrieval

files_top_k: optional number

Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).

maximum5
minimum1
rerank_top_n: optional number

Number of reranked nodes for returning.

maximum100
minimum1
retrieval_mode: optional RetrievalMode

The retrieval mode for the query.

Accepts one of the following:
"chunks"
"files_via_metadata"
"files_via_content"
"auto_routed"
Deprecatedretrieve_image_nodes: optional boolean

Whether to retrieve image nodes.

retrieve_page_figure_nodes: optional boolean

Whether to retrieve page figure nodes.

retrieve_page_screenshot_nodes: optional boolean

Whether to retrieve page screenshot nodes.

search_filters: optional MetadataFilters { filters, condition }

Metadata filters for vector stores.

filters: array of object { key, value, operator } or MetadataFilters { filters, condition }
Accepts one of the following:
MetadataFilter = object { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number or string or array of string or 2 more
Accepts one of the following:
UnionMember0 = number
UnionMember1 = string
UnionMember2 = array of string
UnionMember3 = array of number
UnionMember4 = array of number
operator: optional "==" or ">" or "<" or 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters = object { filters, condition }

Metadata filters for vector stores.

filters: array of object { key, value, operator } or MetadataFilters { filters, condition }
Accepts one of the following:
MetadataFilter = object { key, value, operator }

Comprehensive metadata filter for vector stores to support more operators.

Value uses Strict types, as int, float and str are compatible types and were all converted to string before.

See: https://docs.pydantic.dev/latest/usage/types/#strict-types

key: string
value: number or string or array of string or 2 more
Accepts one of the following:
UnionMember0 = number
UnionMember1 = string
UnionMember2 = array of string
UnionMember3 = array of number
UnionMember4 = array of number
operator: optional "==" or ">" or "<" or 11 more

Vector store filter operator.

Accepts one of the following:
"=="
">"
"<"
"!="
">="
"<="
"in"
"nin"
"any"
"all"
"text_match"
"text_match_insensitive"
"contains"
"is_empty"
MetadataFilters { filters, condition }
condition: optional "and" or "or" or "not"

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
condition: optional "and" or "or" or "not"

Vector store filter conditions to combine different filters.

Accepts one of the following:
"and"
"or"
"not"
search_filters_inference_schema: optional map[map[unknown] or array of unknown or string or 2 more]

JSON Schema that will be used to infer search_filters. Omit or leave as null to skip inference.

Accepts one of the following:
UnionMember0 = map[unknown]
UnionMember1 = array of unknown
UnionMember2 = string
UnionMember3 = number
UnionMember4 = boolean
sparse_similarity_top_k: optional number

Number of nodes for sparse retrieval.

maximum100
minimum1

RetrieversRetriever

Retrieve
POST/api/v1/retrievers/{retriever_id}/retrieve